
An Application Integration - SFTP and GCS Connector! Build SFTP to Google
Cloud Storage Data Pipelines with Easy-To-Use Data Connectors

Rajendraprasad Chittimalla*

Rajendraprasad Chittimalla, MS in Information System Security, Software Engineer - Team Lead, Equifax Inc, USA

Citation: Chittimalla R. An Application Integration - SFTP and GCS Connector! Build SFTP to Google Cloud Storage Data
Pipelines with Easy-To-Use Data Connectors. J Artif Intell Mach Learn & Data Sci 2022, 1(1), 1209-1212. DOI: doi.org/10.51219/
JAIMLD/rajendraprasad-chittimalla/279

Received: 02 August, 2022; Accepted: 18 August, 2022; Published: 20 August, 2022

*Corresponding author: Rajendraprasad Chittimalla, MS in Information System Security, Software Engineer - Team Lead,
Equifax Inc, USA, E-mail: rajtecheng4mft@gmail.com

Copyright: © 2022 Chittimalla R., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

1

Research ArticleVol: 1 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/rajendraprasad-chittimalla/279

 A B S T R A C T
This work explores automating secure data transfers between SFTP servers and Google Cloud Storage (GCS) using

data connectors. The immutability of GCS objects necessitates frequent transfers for data modifications, creating security
vulnerabilities. SFTP to GCS pipelines address this by leveraging secure file transfer protocols. However, traditional approaches
involve complex configurations and manual scripting, leading to inefficiencies. Data connectors offer a streamlined solution with
pre-built configurations and user-friendly interfaces, reducing development time and human error.

Keywords: SFTP, GCS, data connectors, data pipelines,

1. Introduction
Google Cloud Storage (GCS) is one of the three largest

commercially available cloud suites, behind Azure and AWS.
GCS is an elemental part of the Google Cloud that is used
specifically for storing any form of data, such as immutable
objects in containers called buckets. The immutability is one of
the features that make CGS different from other cloud storage
services, as it prevents any changes from being made to an
object once it’s in the GCS, and a different version of the file has
to be uploaded to make and incorporate any changes. Since GCS
focuses on object storage, any edits require downloading the file
locally, making the changes, and then uploading the modified
version back to GCS. This creates more data transfer instances,
and it stretches the attack surface since each transfer instance
may lead to new exploitation opportunities. One way to augment
security here is to build a Safe File Transfer protocol (SFTP) to
GCS data pipelines, which is just one of the ways a secure GCS

pipeline/data transfer patch can be created, but developing and
creating pipelines for different transfer instances comes with its
own set of problems. Therefore, automating the process with the
right data connectors can lead to better results.

2. Literature Review
There is ample literature on SFTP as it’s a universally

used protocol for safe file transfer, covering everything from
its inception, implementation, limitations, etc1. Adequate
literature is available on GCS as well, both from the source
(Google) and third-party entities2. The concept of data pipeline
is discussed extensively in the literature as well. This includes
modeling techniques/approaches for pipelines and relevant
protocols like ETL (Extract-Transform-Load) and ELT (Extract-
Load-Transform)3. The literature also discusses frameworks
for developing data pipelines for specific use cases like
manufacturing4. Other areas of focus include discussing the
scope of data pipelines, their position in the data lifecycle, and

https://doi.org/10.51219/JAIMLD/rajendraprasad-chittimalla/279
https://doi.org/10.51219/JAIMLD/rajendraprasad-chittimalla/279
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajendraprasad-chittimalla/279

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Chittimalla R.,

2

their optimization in modern implementations and tech domains
like Machine Learning (ML)5.

As core elements in data pipelines and other data transfer
use cases, data connectors are an important research topic as
well, though the literature is relatively limited and focuses on
interpretation, specific connector implementations, use cases,
and configurations6.

3. Problem Statements
An SFTP to GCS pipeline is a solution to the security

vulnerabilities inherent in an exposed GCS transfer, though it’s
not the only one. A few different solutions can be implemented
to make GCS transfers even more secure than an SFTP pipeline
despite their high frequency (due to the immutability factor).
However, that’s the most viable implementation for businesses
that rely upon SFTP extensively for most of their outgoing
and incoming file transfers. But it comes with its own set of
challenges/problems.

Inefficiencies in Data Transfer

Traditional data pipeline approaches often involve custom
scripting or complex configurations for each or a set of transfer
instances. This can lead to time-consuming development,
maintenance overhead, and difficulties in scaling data transfer
operations. This may drive up a business’s cost of operations
(costs pertaining to Managed File Transfers or MFTs), increase
the chances of data leaks/interception, require more manual
oversight, and lead to inconsistencies, even in similar transfer
instances. This makes the process of data transfer to GCS
inefficient as a whole.

Changing Configuration Requirements

Data transfer instances, even if both source and destination
remain the same (local or cloud SFTP servers and GCS),
may vary greatly based on different use cases and some other
variables. This is something data pipelines need to adapt
to and if they are reconfigured for each transfer instance and
need to accommodate its complex requirements, it comes with
significant time and resource requirements. It significantly
reduces the responsiveness and agility of the MFT department/
personnel within a firm.

Vulnerabilities in Misconfigured Pipelines

Complex data pipeline configurations and frequent
reconfigurations may enhance the threat/vulnerability profile
of SFTP to GCS pipelines, especially when the configuration is
done manually.

File size limitations from Frequent Transfers

Frequent transfers are an inherent characteristic of any transfer
configuration/arrangement that involves GCS. The reason is the
immutable nature of an object on the GCS, which triggers a new
transfer to accommodate each change/modification. There is 20
MB size limit for each transfer with GCS Connectors.

4. Solution: Building SFTP to GCS Data Pipelines with
Easy-To-Use Data Connectors

Automating transfers between an SFTP server (or cloud) and
GCS via data pipelines that use data connectors can solve or at
least mitigate the above-mentioned problems.

Efficient Data Transfers

Easy-to-use data connectors can streamline data transfer

configurations for SFTP to GCS pipelines. These connectors
may offer a graphical user interface (GUI) for ease of use as
well as pre-built configurations, eliminating the need for custom
scripting and reducing development time. This simplifies data
transfer management, lowers maintenance overhead, and
facilitates scaling operations by automating routine tasks. As a
consequence, both financial and personnel requirements for data
transfer tasks can be reduced quite significantly.

Configuration Adaptability

Data connectors can offer flexibility to accommodate diverse
data transfer needs. They can be designed to handle various
configurations and adapt to different use cases. This eliminates
the need for complex (manual) reconfigurations for each
transfer instance and allows for easy integration with various
data sources and pipeline arrangements between SFTP and GCS.
This flexibility empowers the MFT teams to respond quickly to
evolving data transfer requirements, enhancing overall agility.

Avoiding Misconfigurations

Data connectors can automate secure data transfer processes,
mitigating vulnerabilities arising from manual configurations7.
They can come pre-configured with robust security features like
encryption and authentication protocols, eliminating the risk
of human error during configuration. This adds another layer
of security over the SFTP to GCS transfers, reduces the attack
surface, and strengthens the overall security profile of SFTP to
GCS pipelines.

Mitigating the Risk of Frequent Transfers

It’s important to understand that even automated data transfer
pipelines created using data connectors cannot reduce this risk at
its very core, i.e., by reducing the number of transfer instances.
However, they can optimize data transfer workflows within
SFTP to GCS pipelines and reduce human risk by automating
the entire process.

5. Solution Implementation

Figure 1: Building SFTP to Google Cloud Storage Data
Pipelines with Easy to use Data Connectors.

An SFTP to GCS pipeline is easy enough to automate using

3

Chittimalla R., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

the right connector. The following steps can take you through
the process.

Step 1: Choose the Right Data Connector

There are multiple data connector options for SFTP to GCS
data pipelines, including an option native to Google Cloud. The
Google Cloud Storage Transfer Service allows data transfer
(including bulk transfer) between GCS and a variety of other
sources, including on-premises servers and other clouds,
that may serve as SFTP sources or SFTP access points. It’s a
managed file transfer service offered by Google and includes
multiple layers of security, including encryption during transit.
The cost is based on the amount of data you transfer.

Another option is a commercial data integration tool/platform
like Talend and Informatica Cloud Data Integration. They are
usually well-maintained products, easy to use, and with decent
support.

Lastly, there are open source options like Apache NiFi and
Airflow8. They are maintained by the community and are usually
free to use, though the interface may not be as user-friendly as a
commercially developed and maintained product.

There are multiple factors to take into account when making
this choice, including the cost, user-friendliness of the connector,
additional safety features, etc.

Step-2: SFTP Source Configuration

While the exact configuration process may differ from
connector to connector, a few general elements common in each
SFTP source configuration are host, port, authentication, and
source directory.

The host configuration requires using the hostnames and
IP address of the SFTP server from where the transfer will be
initiated.

Port is about the physical connectivity element of the transfer.
It can either be the default port or a custom port, as required by
the SFTP server.

Authentication and user credentials for transfer instances can
be made part of the configuration for additional security.

The directory setting refers to the exact directory/address
within the SFTP server where the transfer will initiate.

Step-3: GCS Destination Configuration

The other end of a transfer, i.e., destination, needs to be
configured alongside the source. Again, the process may differ
from connector to connector, but there are three core elements
you have to take into account: Bucket name, access permissions,
and folder structure.

The bucket name specifies the bucket within a GCS project
where the file will be stored.

Folder structure becomes relevant if the file has to be stored
within a specific folder inside a bucket (the exact destination of
the file to be transferred).

Access permission (if set) would ensure that the GCS has
relevant credentials to access the file/accept the file from the
SFTP source.

Step-4: Mapping Data Field

Once you have already configured source and destination,
you have to map the entire data pipeline that requires one

additional step: Data transformation. If the data needs to be
transformed for any reason between source and destination, it
has to be done here.

Step-5: Schedule Transfers

An important step in automating file transfers between an
SFTP source and GCS destination is scheduling the transfers
to accommodate the usual transfer needs of the organization.
Instead of setting an actual schedule that might be a bit rigid, it’s
possible to take advantage of a few scheduling variables.

•	 Setting a frequency of transfer. It can be hourly, daily,
weekly, etc., based on volume and other transfer-related
needs.

•	 It’s possible to set up a time window when the transfer
occurs, to ensure they are not coinciding with other outgoing
or incoming transfers that may be relying upon the same
bandwidth and SFTP computing resources, undermining
both.

•	 The retry mechanism built into the connectors can let you
set conditions like how many retries the pipeline should
attempt in case of a failure and its timeline.

Step-6: Monitor and Manage

•	 It’s important to monitor and manage data pipelines to
ensure they are working as intended.

•	 Utilize monitoring tools like Google Cloud’s Stackdriver
to track the status of data transfers. This allows you to
proactively identify any potential issues.

•	 Implement error-handling mechanisms to address any
issues promptly. This includes logging errors and notifying
administrators.

•	 Regularly review and optimize the performance of the data
pipeline to ensure it meets business requirements.

6. Key Limitations and Important Considerations
Even with pre-configured security features in connectors, it’s

essential to follow security best practices. This includes strong
authentication protocols, access control for GCS buckets, and
encryption of sensitive data during transfer.

Reduced Transfer Frequency (Immutable Objects):
Data connectors cannot fundamentally change the inherent
characteristic of GCS, where objects are immutable. Frequent
transfers due to data modifications are unavoidable. However,
connectors can optimize transfer workflows.
Vendor Lock-In (Commercial Options): While commercial
data connectors offer user-friendly interfaces and features, they
can lead to vendor lock-in. Switching to a different connector
might require reconfiguring the entire pipeline.
Learning Curve (Open-Source Options): Open-source
connectors like Apache Airflow offer flexibility but require
technical expertise to set up and maintain. This can be a challenge
for teams without experience in data pipeline development.
Complexity for Multiple Transfers: While connectors simplify
configurations, managing numerous data pipelines with different
configurations can become complex. Data orchestration tools
might be used to manage multiple pipelines.

7. Research Impact
A comprehensive understanding of data pipelines, their

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Chittimalla R.,

4

configuration and implementation, and researching the best
connector for your SFTP to GCS data pipeline needs can help
a massive range of businesses that rely on SFTP and have to
connect with internal or external GCS servers regularly. It
allows businesses to make the process more efficient and safer,
mitigate the attack surface, and protect important business and
client data in transit while taking advantage of the immutability
aspect of GCS. This leads to better productivity and efficient
use of MFT resources, enhances the market’s/clients’ trust in the
business’s commitment to data integrity, and forestalls legal and
reputational liabilities.

8. Conclusion
A data-connector-based pipeline for SFTP to GCS transfer

can be transformational for an organization’s MFT department.
SFTP integrating with GCS Connectors can lead to a successful
file transfer solution with being schedule pull from buckets, push
to buckets or to a server. It could be a new innovation to SFTP
application integration. It mitigates or eliminates several threats
to frequent file transfers required due to the immutable nature
of objects in GCS buckets and significantly removes the human
error element from the equation. However, the success of these
data pipelines relies upon choosing the right connector, and
continued success warrants monitoring and management.

9. References

1.	 Arif H, Hajjdiab H, Harbi FA, et al. A Comparison between
Google Cloud Service and iCloud. 2019 IEEE 4th International
Conference on Computer and Communication Systems
(ICCCS). Singapore, 2019.

2.	 Dehury CK, Jakovits P, Srirama SN, et al. TOSCAdata: Modeling
data pipeline applications in TOSCA. Journal of Systems and
Software, 2022.

3.	 Firdausy D, Silva PD, Sinderen MJ, et al. Semantic Discovery
and Selection of Data Connectors in International Data Spaces.
Interoperability for Enterprise Systems and Applications, I-ESA
2022. Valencia, 2022.

4.	 Nawej CM, Owolawi PA. Evaluation and Modelling of Secured
Protocols’ Spent Transmission Time. 2018 International
Conference on Intelligent and Innovative Computing Applications
(ICONIC). Mon Tresor, Mauritius, 2018.

5.	 Oleghe O, Salonitis K. A framework for designing data pipelines
for manufacturing systems. Procedia CIRP, 2020.

6.	 Petrova-Antonova D, Iva Krasteva, SI, et al. Conceptual
Architecture of GATE Big Data Platform. CompSysTech ‘19:
Proceedings of the 20th International Conference on Computer
Systems and Technologies, 2019.

7.	 Plale B, Kouper I. Chapter 4 - The Centrality of Data: Data
Lifecycle and Data Pipelines. In Data Analytics for Intelligent
Transportation Systems, 2017.

8.	 Raj A, Bosch J, Olsson HH, et al. Modeling Data Pipelines.
2020 46th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA). Portoroz, Slovenia, 2020.

	_GoBack
	_15ja822g62ao
	_d03q44rzs5j8
	_elclhuu9eq89
	_54uyfuncjyc0
	_58zqp0mo9zay
	_1fdebk9rzwvu
	_lvcp6nf3dqda
	_eett3l3w6hsv
	_j39w3e5nqcj5
	_q9ykus7lb6e
	_1sg0oq2jbrmg
	_w35cxa5o7t3b
	_eirxpkglsunv
	_gq6dksdbkrld
	_fyyzamccodg2
	_fenvffim1amn
	_c297xqwbjbaz
	_8aj0ny9m1dhq
	_pz5heeinvcz
	_mgp03e5jk50t

