
AI-Driven Hybrid Strategies for Cloud Migration and Modernization of Java 
Applications

Praveen Kumar Koppanati*

Citation: Praveen KK. AI-Driven Hybrid Strategies for Cloud Migration and Modernization of Java Applications. J Artif Intell 
Mach Learn & Data Sci 2025 3(3), 2848-2853. DOI: doi.org/10.51219/JAIMLD/Praveen-kumar/594

Received: 03 September, 2025; Accepted: 10 September, 2025; Published: 12 September, 2025

*Corresponding author: Praveen Kumar Koppanati, USA, E-mail: praveen.koppanati@gmail.com

Copyright: © 2025 Praveen KK., This is an open-access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 
are credited.

1

Research ArticleVol: 3 & Iss: 3

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/Praveen-kumar/594

 A B S T R A C T 
The modernization of enterprise Java applications is increasingly critical as organizations transition from monolithic 

architectures to cloud-native environments. Hybrid cloud strategies, supported by artificial intelligence (AI), enable a balanced 
approach that leverages the scalability of public cloud while preserving the control of on-premises infrastructure. This paper 
examines AI-driven methodologies that support each phase of migration, including discovery, decomposition, deployment 
planning, resource allocation, automation, and monitoring. Techniques such as microservices decomposition using clustering 
algorithms, reinforcement learning for dynamic autoscaling, and AI-assisted DevOps pipelines are analyzed in detail. Additionally, 
the role of Red Hat OpenShift Service on AWS (ROSA) is highlighted as a managed hybrid solution for migrating Java services 
to AWS without the need for native re-engineering. The study consolidates prior research and industry practices to provide a 
structured framework for AI-enhanced hybrid migration and modernization of Java applications, offering insights into benefits, 
challenges, and future research opportunities. 

Keywords: Artificial intelligence, hybrid cloud, Java modernization, cloud migration, microservices decomposition, resource 
allocation, Open Shift, ROSA.

1. Introduction
Java continues to serve as a cornerstone of enterprise software 

development, particularly in domains such as finance, healthcare, 
government, insurance and logistics. Despite its ubiquity, many 
Java applications remain monolithic, tightly coupled, and 
dependent on legacy middleware. Such architectures restrict 
scalability, hinder integration with modern platforms, and 
increase the cost and complexity of maintenance.

Cloud migration has emerged as a viable solution for 
overcoming these limitations, enabling improved agility, cost 
efficiency, and access to elastic resources. However, traditional 
lift-and-shift migration approaches often fail to capture the full 
benefits of cloud adoption. Running a monolithic application in 
a virtualized cloud environment may provide limited scalability 

but does not inherently deliver cloud-native capabilities such 
as microservices-based agility, automated scaling, or container 
orchestration.

Hybrid cloud strategies address these challenges by 
allowing organizations to distribute workloads across public 
cloud and on-premises environments. This approach provides 
greater flexibility for latency-sensitive and compliance-critical 
components, while enabling scalable deployment of less 
sensitive services in the public cloud. Artificial intelligence (AI) 
further enhances hybrid migration by automating application 
discovery, accelerating decomposition into microservices, 
optimizing deployment placement, and enabling adaptive 
resource allocation across heterogeneous environments.

Recent advances, including AI-driven tools for monolith 

https://doi.org/10.51219/JAIMLD/Praveen-kumar/594
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/Praveen-kumar/594


J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3Praveen KK.,

2

decomposition, reinforcement learning for autoscaling, and 
AI-assisted DevOps automation, indicate a shift toward more 
intelligent and efficient modernization workflows. In addition, 
managed hybrid platforms such as Red Hat OpenShift Service on 
AWS (ROSA) extend these strategies by allowing organizations 
to migrate workloads into AWS clusters without building 
native container solutions from scratch, preserving operational 
consistency across environments.

This paper surveys AI-enabled methods for hybrid migration 
of Java applications, synthesizes prior academic and industrial 
research, and proposes a structured framework that incorporates 
assessment, decomposition, hybrid deployment planning, 
optimization, automation, and monitoring. The discussion 
highlights both the benefits and the challenges of AI-driven 
hybrid migration, providing a foundation for future exploration 
of modernization strategies in enterprise settings.

2. Background and Related Work
2.1. Microservices decomposition for java

Mono2Micro is an IBM-developed tool for decomposing 
monolithic Java applications into functionally cohesive 
microservices. It uses runtime call graph and business use-case 
data to recommend partitions; evaluations show it significantly 
outperforms prior methods in partition quality and receives 
positive practitioner feedback.

CARGO (Context-sensitive Label Propagation) refines 
existing partitioning techniques by building a context- and flow-
sensitive system dependency graph for Java EE monoliths. In 
experiments, CARGO improved partition quality, reduced 
distributed transactions, lowered latency by ~11 %, and increased 
throughput by ~120 %.

2.2. Hybrid cloud migration advisors

Atlas, a hybrid cloud migration advisor, assists in selecting 
which microservices to push to the public cloud and which to 
retain on-premise. Using data-driven learning, it balances three 
metrics—latency, availability, and cost—and offers migration 
plans that yield ~21 % better API latency and ~11 % cost 
reduction with fewer disruptions compared to conventional 
approaches.

2.3. AI-driven resource allocation

A reinforcementlearning (RL) based framework addresses 
dynamic resource allocation in hybrid cloud microservices. 
It continuously adapts provisioning to anticipated demands, 
improving cost efficiency by 30-40 %, improving resource 
utilization by 20-30 %, and reducing latency by 15-20 % during 
peak loads.

2.4. Enterprise AI tools for modernization

IBM offers AIpowered refactoring tools (Transformation 
Advisor, Mono2Micro, Migration Toolkit) integrated into Cloud 
Pak for Applications on OpenShift (hybrid Kubernetes platform). 
These tools aid in assessing and refactoring applications and 
support both VM and container environments.

Generative AI assistants (e.g., IBM’s “Migration Factory” 
with AI assistants) provide rolebased, conversationbased 
interfaces that accelerate migration by enabling consultants to 
generate code, prompts, and user personas faster. These “gen AI 
assets” help automate manual processes in modernization.

Industry discussions highlight hybrid cloud’s role in 
balancing performance, compliance, and cost especially for 
AI workloads. Hybrid strategies enable onprem inference, 
cloudbased training, and data locality, improving flexibility and 
addressing regulatory constraints.

AI integration into cloud migration enhances automation, 
governance, predictive analytics, resource optimization, and 
decision support though challenges like security, complexity, 
cost, and skills gaps remain.

3. Integrated AI-Driven Hybrid Java-Migration 
Framework
Figure 1 outlines a proposed framework combining the tools 
and concepts surveyed:

3.1. Discovery & assessment:

•	 Use IBM’s Transformation Advisor and Migration Toolkit 
to evaluate Java monolith architecture, containerization 
readiness, and refactoring opportunities.

•	 Augment with AI assistants to support exploration, 
stakeholder interviews, and documentation generation.

3.2. Decomposition & partitioning:

•	 Apply Mono2Micro to obtain an initial microservice 
partitioning.

•	 Refine with CARGO’s contextsensitive dependency analysis 
to reduce transaction coupling and improve performance.

3.3. Hybrid deployment planning:

•	 Use Atlas to determine which microservices should remain 
onpremise and which can move to public cloud, optimizing 
latency, cost, and availability.

3.4. Resource allocation optimization:

•	 Deploy an RLbased resource manager that dynamically 
adjusts allocations across hybrid environments, achieving 
cost, utilization, and latency benefits.

3.5. Automation & assistantdriven execution:

•	 Leverage AI assistants and generative AI assets (as in 
IBM’s Migration Factory concept) for automating coding, 
deployment scripts, CI/CD configuration, and consultative 
decision workflows.

3.6. Monitoring & continuous optimization:

•	 Employ AI monitoring (AIOps) to detect performance 
anomalies, suggest tuning adjustments, and manage 
operations across hybrid environments (though specific 
Javamigration use is extrapolated from AIOps general 
practice)

4. Detailed Framework Discussion
The proposed AI-driven hybrid framework for Java 

application modernization can be structured into six major 
phases: 1) discovery and assessment; 2) decomposition and 
partitioning; 3) hybrid deployment planning; 4) resource 
allocation optimization; 5) automation and assistant-driven 
execution; and 6) monitoring and continuous optimization. Each 
phase addresses a specific challenge in transitioning legacy 
monolithic Java workloads toward scalable, hybrid, cloud-
native architectures. The following subsections elaborate on 
these phases and provide representative technical examples.



3

Praveen KK., J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3

4.1. Discovery and assessment

The discovery stage establishes a foundation for migration 
by evaluating the structure, dependencies, and cloud readiness 
of legacy Java systems. Traditional approaches rely heavily on 
manual code reviews and static analyzers, which often overlook 
runtime behaviors and hidden interdependencies. AI-enabled 
tools such as IBM Transformation Advisor and the Migration 
Toolkit extend this process by applying heuristic rules and 
machine learning models trained on prior migration projects. 
These systems identify non-portable APIs, assign risk scores to 
components, and recommend container-friendly runtimes.

A simplified illustration of an AI-driven analyzer is shown 
below:

The output of such tools typically provides actionable 
insights, such as identifying classes that can be containerized 
without modification, highlighting APIs requiring refactoring, 
and recommending suitable Java runtimes for cloud deployment.

4.2. Decomposition and Partitioning

Migrating monolithic Java applications to a hybrid cloud 
often requires decomposition into microservices. AI-assisted 
frameworks such as Mono2Micro and CARGO have advanced 
this process by combining call graph analysis with context- and 
flow-sensitive dependency modeling. These methods enable the 
grouping of classes into service candidates that minimize inter-
service coupling while preserving functional cohesion.

An example of graph-based clustering is shown below:

Once decomposition is determined, service clusters can be 
re-implemented as Spring Boot services.

By coupling AI-generated decomposition with developer 

refactoring, enterprises can accelerate the transition from 
monoliths to modular, hybrid-ready architectures.

4.3. Hybrid deployment planning

Determining the optimal placement of services across 
public cloud and on-premises infrastructure is critical in hybrid 
environments. AI-assisted planners such as Atlas evaluate cost, 
latency, and availability metrics to recommend deployment 
strategies. For example, services processing sensitive payment 
data may remain on-premises, while stateless order-processing 
services may be deployed to the cloud.

Figure 1: Hybrid Trade-Offs.

A deployment plan may be expressed in Kubernetes YAML as 
follows:

This ensures compliance requirements are met while 
leveraging cloud scalability for non-sensitive workloads.

4.4. Resource allocation optimization

Even with optimal placement, workloads may experience 
fluctuating demands. Reinforcement learning (RL) enables 
adaptive resource management by dynamically adjusting 
compute and memory allocations in response to observed 
conditions.

In production, this framework would be extended into 
Kubernetes operators that autonomously scale pods across 
hybrid nodes based on RL-trained policies.

4.5. Automation and assistant-driven execution

AI assistants streamline repetitive migration tasks such as 



J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3Praveen KK.,

4

creating Dockerfiles, generating deployment manifests, and 
configuring CI/CD pipelines. By leveraging generative AI, 
engineers can describe deployment requirements in natural 
language and receive production-ready artifacts.

Figure 2: RL Autoscaler Reduces Latency Faster Under Load.

A simplified RL loop for autoscaling can be demonstrated as:

Figure 3: Automation Pipeline: CI/CD + GitOps Orchestrating 
Hybrid Deployments.

For instance, generating a Dockerfile for a Spring Boot 
service may result in:

Similarly, a CI/CD pipeline can be automatically generated in 
YAML:

This level of automation reduces development overhead 
while ensuring consistency across environments.

4.6. Monitoring and continuous optimization

Post-migration, hybrid environments require robust 
monitoring and anomaly detection. AIOps solutions combine 
machine learning with observability data to predict and remediate 
incidents proactively.

Figure 4: Incident Handling Breakdown After AIOps Adoption.

For example, latency anomalies can be detected using 
Isolation Forest:

Such detection mechanisms can be integrated with monitoring 
tools like Prometheus and Grafana to generate real-time alerts 
and trigger automated remediation workflows.

4.7. Leveraging red hat openshift service on AWS (ROSA)

A significant challenge in hybrid migration is maintaining 
operational consistency across on-premises and cloud 
environments. Organizations often operate Red Hat OpenShift 
clusters within their data centers, but extending workloads 
into the public cloud can require complex engineering efforts, 
particularly when configuring native Kubernetes services 
such as Amazon Elastic Kubernetes Service (EKS). Red Hat 
OpenShift Service on AWS (ROSA) addresses this challenge 
by offering a fully managed OpenShift environment directly on 
AWS infrastructure.

ROSA enables enterprises to adopt a hybrid strategy 



5

Praveen KK., J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3

without re-architecting applications for cloud-native services. 
The platform provides uniform Kubernetes APIs, integrated 
security policies, and managed cluster operations, ensuring 
that applications deployed on ROSA behave consistently 
with their on-premises counterparts. This uniformity reduces 
the operational overhead associated with managing multiple 
orchestration environments and facilitates workload portability.

For Java modernization specifically, ROSA offers built-in 
support for enterprise runtimes such as JBoss EAP, Quarkus, 
and Spring Boot, making it well suited for hosting containerized 
Java microservices. Compliance-sensitive services can be 
retained within on-premises OpenShift clusters, while stateless 
or scalable components can be migrated into ROSA clusters on 
AWS. This distribution allows organizations to meet governance 
requirements while still benefiting from the elasticity of the 
cloud.

.7.1. Cluster provisioning and access: Provision a multi-AZ 
ROSA cluster with STS and opinionated CIDRs:

4.7.2. Identity and secrets: IAM Roles for Service Accounts 
(IRSA): Use OIDC-backed STS so pods obtain AWS IAM 
credentials without static access keys.

IAM trust policy (assume role via service account)

Annotated service account in OpenShift

Database credentials as a Secret

4.7.3. Build and deploy: OpenShift S2I, Deployment, Route: 

S2I BuildConfig (Maven/Java 17)

App deployment + service + TLS route

4.7.4. Gitops with openshift gitops (Argo CD):



J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3Praveen KK.,

6

4.7.5. CI/CD with tekton pipelines: Build JAR, build/push 
image (Buildah), then update the deployment and wait for 
rollout.

5. Challenges and Best Practices
5.1. Data security and compliance

Hybrid cloud may entail sensitive data crossing boundaries. 
AI deployment must conform to compliance and governance 
policies, especially in sectors like finance and healthcare. Hybrid 
deployment planning (via Atlas) mitigates risk by enabling 
strategic placement of sensitive components.

5.2. Skills and organizational readiness

Adopting this framework requires skills in AI, ML, 
Kubernetes, Java refactoring, and cloud operations. Enterprises 
must invest in training or partner with experienced consultancies 
(e.g., via IBM Migration Factory models).

5.3. Cost and ROI

While AIdriven automation accelerates migration and 
yields resource savings, the cost of tools, cloud infrastructure, 
and skilled labor must be weighed. A phased, pilot-based 
adoption (start small and scale) can validate value before large 
investments.

5.4. Tool integration and interoperability

Combining Mono2Micro, CARGO, Atlas, RL resource 
managers, and AI assistants demands well-designed integration. 
Standard APIs, containerized deployment of tooling, and unified 
dashboards are recommended.

5.5. Trust, explainability, and transparency

AI-generated decomposition, migration plans, or resource 
actions must be explainable to architects and stakeholders. Tools 
like Mono2Micro and CARGO should surface reasoning (e.g., 
dependency graphs, business use-case links) to build trust.

6. Conclusion and Future Work
An AI-driven hybrid framework for modernizing enterprise 

Java applications has been outlined, integrating automated 
discovery and assessment, algorithmic decomposition, hybrid 
deployment planning, reinforcement-learning-based resource 
optimization, assistant-driven automation, and AIOps-

enabled operations. The synthesis indicates that tools such as 
Mono2Micro and CARGO can improve service boundaries 
and cohesion, planners similar to Atlas can rationalize cross-
environment placement against cost-latency-availability 
objectives and learning-based controllers can adapt resource 
allocations to workload dynamics. Managed OpenShift on 
AWS (ROSA) further supports consistency across on-premises 
and public cloud by preserving the OpenShift developer and 
operations model while exposing AWS elasticity and services.

The principal implication is that modernization outcomes 
depend less on a single migration pattern and more on a disciplined, 
AI-assisted workflow spanning assessment to operations. When 
applied cohesively, the approach reduces manual refactoring 
effort, narrows architectural risk, and promotes continuous 
optimization in heterogeneous environments. The framework 
is technology-agnostic at the pattern level but benefits from 
curated tooling and platform choices that minimize operational 
variance across sites.

Future research directions include explainable AI for 
decomposition and placement to increase stakeholder trust 
and auditability, domain-specific AIOps for Java runtime 
telemetry, linking bytecode-level signals to SLO enforcement, 
rigorous economic analyses of hybrid AI orchestration at scale, 
including carbon/energy considerations and reference pipelines 
and benchmarks that standardize evaluation across assessment, 
decomposition, placement, and adaptive control.

7. References

1.	 A. Kalia. Mono2Micro: A Practical and Effective Tool for 
Decomposing Monolithic Java Applications to Microservices. 
arXiv, Jul. 2021.

2.	 V. Nitin. CARGO: AIGuided Dependency Analysis for Migrating 
Monolithic Applications to Microservices Architecture. arXiv, 
2022.

3.	 KH. Chow. Atlas: Hybrid Cloud Migration Advisor for Interactive 
Microservices. arXiv, 2023.

4.	 B. Barua, M. S. Kaiser. AIDriven Resource Allocation Framework 
for Microservices in Hybrid Cloud Platforms. arXiv, 2024.

5.	 https://www.researchgate.net/publication/387121578_The_
Intersection_of_AI_and_Cloud_Modernization_Challenges_
and_Opportunities.

6.	 Omoike, Oreoluwa. (2024). Leveraging AI TO Improve Cloud 
Modernization. 04. 688-691.

7.	 Siddharth Choudhary Rajesh, Dr. Vishwadeepak Singh 
Baghela. Enhancing Cloud Migration Efficiency with Automated 
Data Pipelines and AI-Driven Insights. International Journal of 
Innovative Science and Research Technology (IJISRT), 2025; 
9: 3670-3690.

8.	 M. A. Khan, R. Walia. Intelligent Data Management in Cloud 
Using AI. 2024 3rd International Conference for Innovation in 
Technology (INOCON), Bangalore, India, 2024; 1-6.

9.	 Perugu, Prasanna Kumar. AI and Machine Learning in Cloud 
Migration: Enhancing Efficiency and Performance. August 15, 
2024.

10.	 Kim, Y., Park, J., Kwon, H. AI-driven decision-making in cloud 
resource management: A case study ofpredictive analytics. 
International Journal of Cloud Computing, 2020;7: 305-322.

11.	 McGrath, G, Short, J. The evolution of serverless computing: 
AI and its impact on modern cloudarchitecture. IEEE Cloud 
Computing, 2019; 6: 6-14.

https://www.researchgate.net/publication/387121578_The_Intersection_of_AI_and_Cloud_Modernization_Challenges_and_Opportunities
https://www.researchgate.net/publication/387121578_The_Intersection_of_AI_and_Cloud_Modernization_Challenges_and_Opportunities
https://www.researchgate.net/publication/387121578_The_Intersection_of_AI_and_Cloud_Modernization_Challenges_and_Opportunities

