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 A B S T R A C T 
The advancement in cloud computing has brought about the need for resource management and allocating computing, 

storage, and network resources dynamically to suit the ever-evolving workloads. This paper focuses on how machine learning 
(ML) and deep learning (DL) AI approaches can be used to build predictive algorithms for dynamically allocating resources 
in cloud systems. This paper introduces an AI method for forecasting the workload, resource usage, and real-time objectives 
to allocate resources better and improve the client's Quality of Service (quality of service) to reduce overall costs significantly. 
Experimental evaluation based on realistic cloud traces shows that the solution substantially outperforms traditional rule-based 
and heuristic-based methods by achieving 25% higher resource utilization and 30% less quality-of-service violation. Therefore, 
the underlying formulated dynamic resource allocation framework has the potential to considerably enhance the effectiveness, 
efficiency, and competitiveness of cloud computing systems.

Keywords: Cloud computing, Dynamic resource allocation, Artificial intelligence, Predictive models, Real-time optimization, 
Machine learning, Deep learning, Reinforcement learning.
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1. Introduction
Cloud computing is the new model by which businesses 

and organizations procure and use computing resources. Thus, 
cloud computing provides easy accessibility to resources, which 
is easily extensible, flexible, and cheap to implement compared 
to PCP1. However, current cloud infrastructures’ increased 
complexity and dynamics create challenges in controlling 
resources and their distribution2. Conventional resource 
allocation techniques, including rule-based policies and heuristic 
algorithms, must be revised to address cloud workloads’ 
capacity variability and unpredictability3. These methods use 
fixed thresholds coupled with static policies, making inefficient 
use of resources and probably violating quality of service4. To 
overcome these limitations, the researchers have explored the AI 

approach, which is ML and DL, focusing more on intelligent and 
adaptive RA mechanisms5.

Dynamic resource allocation based on AI uses current 
state data and previous statistics and predicts future changes6. 
Thus, using workload characteristics, resource, and application 
performance patterns, AI models can be trained to predict 
resource requirements and allocate them in advance7. Such an 
approach allows Cloud providers to control the use of resources 
and, therefore, cut additional costs that might accrue to users 
with a guarantee of quality of service.

This paper also presents an AI-based model for real-time 
resource management of cloud data centers. It involves workload 
prediction, resource usage prediction, and real-time scheduling 
of needed compute, storage, and network resources based on 
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workload patterns, with robust classical and emerging ML & DL 
methodologies in hand and utilizing models like LSTM and RL 
to enhance the predictive models and optimization algorithms.

2. The main contributions of this paper are as follows:
This paper presents a symbiotic, AI-based approach for 

the dynamic allocation of resources in cloud computing 
environments that utilize workload and resource-use forecasting 
methods and real-time optimization techniques.

I present new schemes of ML and DL to estimate workload 
and resource utilization accurately based on different attributes 
and metrics.

To address these challenges, this paper proposes an RL-based 
optimization algorithm for making resource allocation decisions 
in response to the real-time state of a system and its predicted 
future state and to ensure that resource usage is optimized and 
quality of service violations to a minimum.

Using real-world cloud traces, I perform thorough simulations 
and analyze the proposed Framework’s outperformance of the 
existing rule-based and heuristic methods.

3. Related Work
Resource Allocation through Machine Learning

Over the years, researchers have discovered that machine-
learning techniques can make resource allocation in cloud 
computing more accurate and flexible. Some recent developments 
have focused on creating better machine learning architectures 
and applying various new methods to improve performance.

For example, Liu and colleagues8 suggested using deep 
reinforcement learning for dynamic resource management 
in edge-cloud settings. They created a multi-agent deep 
reinforcement-learning model that combines techniques from 
both edge nodes and cloud servers in the decision-making 
process while optimizing benefits at both local and global 
levels. Their method showed better resource usage and quality 
of service compared to other traditional deep reinforcement 
learning methods.

In another study, Wang and colleagues9 described a method 
for estimating workload and distributing resources in cloud 
data centers using graph neural networks. By representing the 
relationship between workloads and resources as a graph, their 
graph neural network model captures the system’s structure and 
dependencies. This leads to better predictions about the outcome 
and better decisions about how many resources to allocate.

Resource Allocation using Deep Learning

Deep learning strategies, such as deep neural networks and 
convolutional neural networks, are very effective at analyzing 
the complexity of cloud workloads and identifying patterns and 
dependencies in resource utilization data.

Chen and colleagues10 developed a deep learning-
based approach for adjusting resources in cloud computing 
environments at runtime. They created a two-layer model where 
the first layer uses long short-term memory (LSTM) to model 
the workload, and the second layer (deep Q-network) manages 
the resources. Compared to traditional machine learning-based 
approaches, their proposed Framework showed improved 
performance.

Mao et al. also proposed an innovative model called 
convolutional LSTM (ConvLSTM) for workload prediction. 
This model considers both spatial and temporal characteristics 
in cloud data centers11. As a result, it has better predictability and 
accuracy than regular LSTM models and allows for optimizing 
resource use by tracking workload dependencies and patterns in 
space and time.

Resource Allocation using Reinforcement Learning

Researchers are interested in reinforcement learning 
strategies because they effectively teach the best resource 
allocation strategies in cloud settings.

Liu and colleagues12 proposed another approach that involves 
using hierarchical reinforcement learning (HRL) for dynamic 
resource allocation in cloud computing. It consists of a higher-
level reinforcement learning agent responsible for general 
resource allocation decisions and lower-level reinforcement 
learning agents that handle specific choices for each resource. 
Compared to the incremental approach to reinforcement learning, 
the hierarchical approach promotes optimal resource allocation 
and can use efficient sub-policies to refine action plans.

Proposed a multi-objective reinforcement learning (MORL) 
framework for resource allocation in cloud data centers. By 
targeting multiple objectives, including resource utilization, 
quality of service, and energy consumption, their approach 
learns allocation policies that are near Pareto-optimal, meaning 
that improving one aspect will likely worsen another.

Combining Multiple Approaches

More recently, researchers have also worked on integrating 
more than one artificial intelligence technique to better optimize 
resource provisioning in cloud computing environments. Wang 
and colleagues14 described a combined solution that uses both 
deep learning and reinforcement learning to predict workloads 
and achieve proper resource optimization. They applied a 
deep belief network (DBN) to predict workloads and a deep 
deterministic policy gradient (DDPG) algorithm to forecast 
them. As the comparisons above show, this hybrid approach 
offers better results than using each technique individually.

In another study, Liu and others15 proposed an ensemble 
learning method for predicting workloads in the cloud-
computing domain. To improve workload prediction accuracy, 
they designed a stacking ensemble model implemented through 
a set of base predictors: LSTM, CNN, and GNN. In addition 
to achieving higher prediction accuracy, the ensemble approach 
also provides a higher degree of realism.

The articles presented reveal the state-of-the-art 
advancements in analyzing and developing artificial intelligence-
based techniques for managing dynamic resources in cloud 
computing from 2021 to 2023. These latest developments, 
such as advanced machine learning and deep learning models, 
reinforcement learning-based optimization algorithms, and 
hybrid and ensemble approaches, establish a solid foundation 
for the proposed AI-driven framework.

4. The Suggested AI-Powered Framework
This section will provide an AI-based framework for dynamic 

resource provisioning in cloud computing infrastructures. The 
Framework has three main parts: estimating workloads, service 
usage, and resource capacity and managing all these in real-time. 
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It is extended by utilizing the new advancements of machine 
learning and deep learning developed after 2021 to enhance 
the Framework’s efficacy and flexibility. The following Figure 
1 presents an overall view of the Framework proposed in this 
research study.

Figure 1: Architecture of the proposed AI-driven framework 
for dynamic resource allocation.

Workload Forecasting

The first part of the Framework predicts workloads, aiming 
to forecast measurable future demand for resources based on 
historical workload records. Workload forecasting is essential 
for determining when additional power needs to be added to 
ensure proper resource allocation and future capacity planning16.

I propose a new workload prediction model that combines 
a temporal convolutional network (TCN)17 to process calendar 
information and a gated recurrent unit (GRU) network18 for the 
remaining features. These networks have been used to capture 
long-range dependencies within time series more effectively 
than traditional recurrent neural networks (RNNs). At the same 
time, GRUs offer a more computationally efficient solution than 
LSTMs when dealing with sequential data.

The TCN-GRU model takes historical log data as input and 
then forecasts resource usage for a future period based on time 
series data, such as CPU, memory, and traffic. The model is built 
using several TCN layers to extract features from the inputs, 
GRU layers to model the temporal characteristics of the inputs, 
and fully connected layers to provide output.

Training a hybrid model involves using a sliding window 
approach. A sequence of inputs contains the values of resource 
utilization over the last t time units, and the output is resource 
utilization over the next k time units. The model uses the Adam 
optimization function19 and Mean Squared Error (MSE) as the 
loss function during the training process.

In addition to the TCN-GRU model, I tried other state-of-
the-art machine learning algorithms for predicting workloads, 
including Graph Attention Network (GAT)20 and Deep Gaussian 
Process (DGP)21. These models offer more straightforward 
ways to address data dependencies and the stochastic Nature of 
workloads.

Resource Utilization Prediction

The second component is predicting resource utilization, 
which can be described as an effort to forecast the expected 
resource usage of virtual machines (VMs) based on their 
characteristics and past resource usage over a certain period. 
Resource forecasting is also essential for making decisions 
about VM placement and migration22.

For this purpose, I propose a deep learning-based resource 
utilization prediction model that combines convolutional 

neural networks (CNNs) and long short-term memory (LSTM) 
networks. CNNs are particularly useful for extracting spatial 
features from input data, while LSTMs are specifically designed 
to capture temporal relationships23.

The CNN-LSTM model uses VM characteristics such as the 
number of allocated CPU cores, RAM size, and disk size, as 
well as other characteristics, including historical information on 
resource utilization. The model’s architecture consists of the first 
two CNN layers for extracting spatial features from the input, the 
following LSTM layers for capturing temporal characteristics, 
and finally, the fully connected layers that produce the final 
output. The model is trained on historical data to estimate the 
probable amount of CPU, memory, and disk resources that VMs 
would consume during a given time interval in the future.

To train the CNN-LSTM model, I employ the same sliding 
window approach used in the workload prediction model. The 
input layer contains a range of VM characteristics and utilization 
measurements collected during the previous t measurements, 
and the expected result is the forecast of subsequent resource 
utilization for the following k periods. The Adam optimizer is 
used during the training process, and the loss function is the 
mean squared error (MSE).

I also consider incorporating other advanced deep learning 
approaches in the prediction of resource utilization, including the 
attention mechanism24 and Generative Adversarial Networks25. 
These techniques can help capture more intricate relationships 
and increase the accuracy of resource usage predictions.

Real-Time Optimization

The third and final element identified in the Framework is 
real-time optimization, which aims to provide dynamic decisions 
regarding workloads and available resources based on forecasts 
and potential system overloads. Given the dynamic Nature of 
workloads, the goal is to meet service demands using resources 
to create an optimal working environment and minimise QoS 
violations.

I propose a deep reinforcement learning (DRL) optimization 
algorithm designed to make allocation decisions through its 
interactions with the cloud environment. DRL combines deep 
learning capability for feature extraction and reinforcement 
learning for sequential decision-making4.

The DRL-based optimization algorithm can be defined as 
an agent that formulates the system’s current state, consisting 
of workload forecasts, resource utilization predictions, current 
usage, and allocations. The agent then takes an action, such 
as allocating or deallocating resources to VMs, and receives 
a reward based on the system’s current performance or a 
punishment if the system’s performance is poor.

To model the DRL problem, I define the following 
components:

State space: The set of all possible team member demand 
forecasts, server use forecasts, current server use, and other 
system states.

Action space: The resource management activities that can 
be performed, such as allocating or deallocating CPU time, 
memory, or disk space to a volume or calculating the cost of 
running a VM.

Reward function: This function determines the degree of 
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system success/efficiency based on resource consumption, QoS 
parameter violations, and other parameters of interest. When 
an agent selects actions that enhance system performance, it 
receives a positive response; when it chooses actions that reduce 
system performance, it is punished.

To model the DRL agent, I employ a deep Q-network (DQN) 
with duelling architecture, as proposed in27,28. The duelling 
Nature of the DQN synthesizes a new architecture that splits 
the estimates of state values and action advantages, making 
learning more stable and faster. The agent decides which action 
to perform based on the estimated Q-Table or matrix for State-
Action pairs.

To train the DRL agent, I use experience replay, a common 
technique in deep reinforcement learning, and prioritized 
experience replay (PER)29,30. The PER scheme assigns higher 
sampling probabilities to samples with more considerable 
temporal differences, enabling efficient learning from essential 
transitions. In addition to the proposed DRL-based optimization, 
I consider other current approaches under reinforcement 
learning, including soft actor-critic (SAC)31 and proximal policy 
optimization (PPO)32. These algorithms offer a set of learning 
mechanisms that can be used to learn resource allocation policies 
given the current system state and the reward from the action 
taken.

In the present study, I conduct a detailed simulation with 
cloud traces to assess the efficacy of the proposed AI-generated 
Framework for dynamic resource allocation. In the next section, 
I discuss the experimental setup, including the datasets, in 
the context of SCIs and new cloud computing platforms and 
technologies that have emerged between 2021 and 2024.

Cloud Simulator

I use CloudSimPlus33, a flexible and relatively new cloud 
simulation framework, to experiment with a cloud computing 
environment. CloudSimPlus has features that allow for 
modelling and simulating cloud infrastructure, including data 
centre models, host models, virtual machine models, and 
allocation policies. Additionally, it supports loading external 
workload datasets and incorporating different algorithms for 
resource utilization.

I integrate CloudSimPlus to include the created AI-based 
Framework, workload prediction, resource usage estimation, 
and online optimization techniques. The simulator’s features 
are designed to analyze a complex cloud data centre with many 
hosts, VMs, and workloads.

4.2 Workload Datasets

To evaluate the Framework’s performance under realistic 
workload conditions, I use three real-world cloud traces:

Google Cluster Trace (2019)34: This trace consists of the 
number of shares and pins, the percentage of cache hits, and I/O 
statistics for 31 days of a production cluster at Google. It captures 
information about submitted jobs, associated tasks, requested and 
used resources, and many performance measurements, including 
task execution times and quality of service requirements.

Alibaba Cluster Trace (2021)35: This trace includes resource 
consumption data and performance metrics gathered from 
Alibaba’s production clusters over 2 weeks. It provides details of 
jobs and tasks, submitted and requested resources, and the means 

of evaluating the performance of virtual organizations based on 
quality of service constraints that can define the duration of a 
particular task.

Microsoft Azure Trace (2023)36: This trace consolidates 
resource utilization data and performance indicators obtained 
from Microsoft Azure production clusters and covers 21 
days. It involves VM characteristics, resource demands, and 
consumptions in the form of deployment information, service 
quotas, quality of service (QoS) limitations, VM lifetime 
expectations, and more.

I clean the traces to remove irrelevant entries and extract 
different workload characteristics and resource usage features 
to develop the machine learning and deep learning algorithms. 
Unlike random splitting, where the data is divided into training, 
validation, and test sets, the preprocessed data is similarly split.

To assess the performance of the proposed AI-driven 
framework, I compare it against the following state-of-the-art 
methods for dynamic resource allocation in cloud computing:

GNN-based allocation9: This method involves applying GNN to 
predict workload and determine resources, with the relationships 
between workloads and resources being in a graph form.

ConvLSTM-based allocation11: This method applies a 
ConvLSTM model for workload prediction and resource 
management because the workload distribution can be learned 
from spatial and temporal perspectives.

HRL-based allocation12: This method uses a new HRL in which 
a high-level RL governs total resources and controls the overall 
actions, while a low-level RL governs every resource.

MORL-based allocation13: This method utilizes a dynamic 
approach called multi-objective reinforcement learning (MORL) 
to allocate resources, aiming to optimize several aspects of the 
system, including resource usage, quality of service, and power 
usage.

Hybrid DBN-DDPG allocation14: This method employs a DBN 
model for workload prediction and uses the DDPG as an action-
selection policy to achieve optimal server allocation.

To ascertain the efficiency of the proposed AI-based 
Framework and compare it with the state-of-art methods 
mentioned in Section 4, Table III summarizes the critical 
research areas based on the proposed Framework of future 
communication networks.

5. Results AND Discussion
In this section, I describe and analyze the simulation results 

of the proposed AI-based Framework for dynamic resource 
management in cloud computing environments. I assess the 
framework’s resource utilization, QoS violations, and cost 
efficiency and compare it with the existing approaches discussed 
in Section 4.3.

Workload Forecasting Accuracy

First, I evaluate the performance of the proposed hybrid 
TCN-GRU workload-forecasting model and compare it with 
alternative machine learning algorithms, including Graph 
Attention Networks (GATs) and Deep Gaussian Processes 
(DGPs). As shown in Figure 2, which presents the Mean 
Absolute Percentage Error (MAPE) performance of the various 
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workload-forecasting models for the Google Cluster Trace 
(2019), Alibaba Cluster Trace (2021), and Microsoft Azure 
Trace (2023), the proposed model yielded better results.

Figure 2: Workload forecasting accuracy comparison.

Based on the results shown in Figure 2, the proposed hybrid 
TCN-GRU model outperforms the GAT and DGP models in 
terms of workload forecasting accuracy, with the lowest MAPE 
values for all the analyzed datasets. Combining more efficient 
sequencing and TCNs for capturing long-range dependencies 
can lead to more accurate predictions than the other models in 
this experiment.

Resource Utilization Prediction Accuracy

First, I evaluate the performance of the CNN-LSTM model 
for resource utilization prediction and compare it with other deep 
learning approaches, including attention mechanisms, Generative 
Adversarial Networks (GANs), and similar techniques. As 
shown in Figure 3, the various resource prediction models 
have different Root Mean Square Error (RMSE) values for the 
Google Cluster Trace (2019), Alibaba Cluster Trace (2021), and 
Microsoft Azure Trace (2023) datasets. 

Figure 3: Resource utilization prediction accuracy comparison.

Figure 3 clearly shows that the CNN-LSTM model 
outperforms the others with the lowest RMSE values for all three 
datasets, indicating that it should predict resource utilization with 
greater accuracy than the attention and GAN-based models. The 
combination of CNNs for spatial feature learning and LSTMs 
for understanding temporal trends allows the model to capture 
intricate and diverse patterns and dependencies in the resource 
utilization data.

Resource Utilization and Quality of Service (quality of 
service) Violation

To evaluate the effectiveness of the proposed AI-driven 
framework, I analyze the amount of computing resources 
consumed and QoS violations of the system and compare it with 

the existing approaches. In Figures 4, 5, and 6 below, I compare 
the average resource utilization achieved by each method for 
three publicly available datasets: Google Cluster Trace 2019, 
Alibaba Cluster Trace 2021, and Microsoft Azure Trace 2023. 

Figure 4: Average resource utilization comparison.

As seen in Figure 4, the AI-driven framework achieves 
the highest average resource utilization for all three datasets, 
outperforming the state-of-the-art methods. The combination of 
accurate workload forecasting, resource utilization prediction, 
and real-time optimization enables the Framework to make 
informed resource allocation decisions, leading to improved 
resource utilization.

Figure 5 shows the percentage of quality-of-service 
violations incurred by each method for the Google Cluster Trace 
(2019), Alibaba Cluster Trace (2021), and Microsoft Azure 
Trace (2023) datasets.

Figure 5: quality of service violations comparison.

As seen in Figure 5, the AI-driven framework incurs the 
lowest percentage of quality-of-service violations compared 
to the state-of-the-art methods. Proactive resource allocation 
based on workload and resource utilization predictions helps 
prevent resource overload. It ensures that the required resources 
are available to meet the quality-of-service requirements of the 
workloads.

Cost Efficiency

I also evaluate the cost efficiency of the AI-driven framework 
and compare it with the state-of-the-art methods. Figure 6 
shows the normalized cost incurred by each method for the 
Google Cluster Trace (2019), Alibaba Cluster Trace (2021), and 
Microsoft Azure Trace (2023) datasets, considering the cost of 
resource overprovisioning and quality of service violations.

 As seen in Figure 6, the AI-driven framework achieves the 
lowest normalized cost for all three datasets, indicating higher 
cost efficiency compared to the state-of-the-art methods. The 
improved resource utilization and reduced quality of service 
violations resulting from the Framework’s intelligent resource 
allocation decisions contribute to the overall cost savings.
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Figure 6: Normalized cost comparison.

Optimization Algorithm Performance

Finally, I evaluate the performance of the DRL-based 
optimization algorithm and compare it with other state-of-the-
art RL algorithms, such as SAC and PPO. Figure 7 shows 
the convergence of the different RL algorithms regarding the 
average reward obtained over training episodes.

Figure 7: RL algorithm convergence comparison.

Figure 8 compares the learning curves of the different 
algorithms with varying reinforcement learning architectures. 
It’s clear that the deep reinforcement learning (DRL) with the 
duelling Deep Q-Network (DQN) curriculum learning-based 
optimization algorithm performs the best and converges faster 
than both the Soft Actor-Critic (SAC) and Proximal Policy 
Optimization (PPO) algorithms. One of the critical features of 
the original DQN is its ability to separate the estimation of state 
values and action advantages, which increases the stability and 
efficiency of the learning process, resulting in better resource 
allocation decisions.

The simulation results demonstrate that using the designed 
AI-based Framework for dynamic resource management offers 
significant and impressive performance improvements in cloud 
computing architectures. Since AI workloads vary dynamically, 
incorporating advanced machine learning and deep learning 
techniques for workload forecasting, resource usage prediction, 
and real-time resource optimization greatly enhances the 
Framework’s resource utilization, quality of service, and cost 
savings compared to rule-based and heuristic approaches and 
state-of-the-art AI-based frameworks.

Conclusion and Future Work

Based on the comprehensive literature analysis mentioned 
in this paper, I designed an AI-based framework for optimally 
managing resources in the cloud computing environment. 
The Framework applies advanced machine learning and 
deep learning approaches to workload forecasting, resource 
consumption prediction, and operational fine-tuning. The 

proposed TCN-GRU model can effectively predict future 
resource needs. In contrast, the CNN-LSTM model can identify 
the probable resource requirements of VMs based on their 
features and history. The proposed optimization algorithm is a 
deep reinforcement learning (DRL) based algorithm, using a 
duelling DQN architecture, which takes the workload forecast, 
resource utilization predictions, and current system state to 
decide on dynamic resource allocation and how to allocate 
resources to achieve maximum overall resource availability or 
utilization with minimal compromise to the quality of service 
(quality of service).

To evaluate the proposed Framework, I performed various 
simulations. I obtained both ideal and real-world results, 
considering the Google Cluster Trace (2019), Alibaba Cluster 
Trace (2021), and Microsoft Azure Trace (2023) as real-world 
cloud traces. The simulation outcomes showed that the developed 
AI-based Framework has higher resource utilization and lower 
quality of service violations than traditional approaches using 
rule-based, heuristic, and other AI approaches, with up to 25% 
higher resource utilisation and 30% fewer service violations. 
The cost-benefit analysis also shows substantial savings by 
avoiding providing more resources than required to handle 
customer traffic and incurring penalties for violating quality of 
service parameters.

In conclusion, the proposed AI-driven framework can open 
up new possibilities to enhance the efficiency of assessing and 
managing the performance and cost of cloud computing systems. 
By relying on more advanced machine learning and deep learning 
technologies, the Framework allows cloud providers to make 
more informed and anticipatory decisions regarding resource 
usage and requirements that can easily change and fluctuate in 
the context of cloud-based workloads.

Future work includes extending this Framework by 
incorporating other resource types, such as network bandwidth 
and I/O resources, and utilizing transfer and meta-learning 
techniques to enhance the performance of machine learning 
and deep learning models across different cloud histories and 
workload patterns. Further research on the practical applicability 
of the proposed Framework in large-scale production clouds 
and the impact of real-time performance for large-scale cloud 
implementations can be helpful in the practical application of 
the approach.

Another noteworthy avenue of research is reconsidering the 
interaction between the AI-based resource allocation model and 
other modern concepts, such as edge computing and the Internet 
of Things (IoT). With billions of connected devices generating 
vast amounts of data, efficient resource usage becomes 
imperative. Due to the more complex and specific Nature of 
such environments, including resource limitations, the ability 
to work with heterogeneous devices, and stricter requirements 
for real-time data processing, there is potential to improve the 
situation in edge computing and IoT scenarios.

Additionally, it is crucial to make such systems more 
explainable and interpretable, as this will help overcome some of 
the barriers associated with trust and adoption by cloud providers 
and consumers. By making the Framework more transparent and 
accountable regarding their rationales for granting resources to 
specific purposes, they should work on methods of properly 
explaining that to users.

In summary, the presented model of an AI-based precision 
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for the source of cloud-organized compute assets for dynamic 
provisioning and distribution of the cloud system proves that 
modern machine learning and deep learning techniques can 
improve the efficiency of cloud systems. The challenges in the 
growth and development of cloud computing will remain stoked 
by the ever-growing scale and the level of work that is still to be 
automated and integrated within the intelligent and sustainable 
provisioning of resources.
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