
A Novel Approach to Hardware-Software Co-Design for Power-Efficient AI Systems

Karthik Wali*

Citation: Wali K. A Novel Approach to Hardware-Software Co-Design for Power-Efficient AI Systems. J Artif Intell Mach Learn 
& Data Sci 2022 1(1), 2769-2775. DOI: doi.org/10.51219/JAIMLD/karthik-wali/582

Received: 03 March, 2022; Accepted: 28 March, 2022; Published: 30 March, 2022

*Corresponding author: Karthik Wali, ASIC Design Engineer, USA, E-mail: ikarthikw@gmail.com

Copyright: © 2022 Wali K., This is an open-access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 
are credited.

1

Research ArticleVol: 1 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/karthik-wali/582

 A B S T R A C T 
The increasing number of AI applications, various usages, and diversified models have prompted the need for a more advanced 

and reusable hardware platform. Nonetheless, the large number of computations that AI algorithms require is a crucial challenge 
in edge computing, embedded systems, and battery-operated devices regarding energy consumption. Consequently, in this paper, 
a hardware-software co-design framework is presented to enhance the performance of the AI system and, at the same time, 
reduce its energy consumption. With the help of our combined approach, which includes HW-NAS, DVFS, and low-bandwidth 
AI models forming as well as compiler-level pruning, quantization, and model compression, our methodology achieves the 
best trade-off in terms of performance, accuracy, and energy. To this end, our design focuses on Field-Programmable Gate 
Arrays (FPGAs) and System-On-Chips (SoCs), obtaining portable and transferable solutions for various AI tasks. Promising 
experiments also show up to 50% energy saving with a very less hit in performance on the different AI models. Therefore, this 
research provides a solution for improving the efficiency of AI power consumption and enhancing real-time and other embedded 
applications.

Keywords: Hardware-Software Co-Design, Artificial Intelligence, Neural Architecture Search, Edge Computing, Model 
Compression, FPGA, DVFS.

1. Introduction
1.1. Importance of Hardware-Software Co-Design for 
Power-Efficient AI Systems

Figure 1: Importance of Hardware-Software Co-Design for 
Power-Efficient AI Systems.

• Bridging the Performance-Efficiency Gap: Modern AI 
models can provide very high accuracy, but the price for 
obtaining this accuracy greatly expended computational 
and energy resources. This is realized through the equal 
optimization of the hardware and the algorithmic layers 
using hardware-software co-design1-4. This means that 
models are no longer just characterized by how fast they 
perform but by how thermally efficient and cost-effective 
energy is, especially when used in SoCs and portable 
devices.

• Customized Architectures for Specific Workloads: 
GPUs, which are commonly used in all computers, are not 
always the optimal solution for AI. It allows the formulation 
of domain-specific accelerators for specific model features, 
e.g., CNNs containing many convolutions or transformers 
based on the attention mechanism. Data reuse, parallelism, 

https://doi.org/10.51219/JAIMLD/karthik-wali/582
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/karthik-wali/582


J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Wali K.,

2

and precision tuning can be performed with the specific 
design to avoid redundant computations.

• Energy-Aware Neural Architecture Search (NAS): 
Therefore, including energy constraints in the NAS process 
directly guarantees that model architecture selection will 
consider the power consumption, accuracy, and latency. 
This leads to AI models that would be primarily optimized 
for power efficiency instead of models that would be made 
power-efficient after they have been created.

• Dynamic Resource Management via DVFS: DVFS 
enables dynamic control of the power consumption of the 
hardware at run time, depending on the intensity of the 
workload. Co-design frameworks can directly incorporate 
DVFS policies into the software hierarchy to make smart 
and adaptive scaling decisions, thus increasing the device’s 
lifespan and decreasing heat production.

• Enhanced Model Compression Techniques: Two 
approaches, namely, pruning and quantization, or using 
Huffman code, are most efficient when implemented with 
hardware considerations in mind. Co-design ensures that 
these optimizations reflect on the architecture of the design, 
such as memory hierarchy or support data width, thus 
gaining full benefits without compromising performance.

• Improved Scalability Across Platforms: The underlying 
co-design allows the creation of portable pipelines across 
microcontrollers, FPGAs, and cloud accelerators. This 
portability allows for creating an application once and 
running it at the same time with a similar level of energy 
efficiency and performance across different environments.

• Reduced Time-to-Deployment: Initial collaboration 
between hardware and software developers leads to 
faster design implementation and lessens the number of 
integration complications. Co-design enables manufacturers 
to accelerate product delivery timelines because it simplifies 
developmental procedures more effectively in industries 
that operate at high speeds, such as consumer electronics, 
robotics, and automotive.

• Essential for Edge AI and IoT Applications: Edge 
computing operates with devices that usually need to work 
within restrictions of battery power together with thermal 
constraints. Through co-design approaches, AI systems 
achieve full optimization with their operating conditions, 
which permits immediate processing capabilities in 
situations where regular AI systems cannot operate because 
of power restrictions.

1.2. A Novel Approach to Hardware-Software Co-Design

The growing installation of artificial intelligence in power-
limited environments, including edge devices, autonomous 
systems, smart sensors, and wearables, demonstrates the weakness 
of conventional design frameworks. Traditional AI development 
knocks hardware off from software by letting models generate 
first before considering target hardware deployment. Using 
this chronological order in development produces inferior 
results concerning power consumption, response times, and 
system resource management. The new hardware-software 
co-design approach integrates development by optimizing 
model architecture design and hardware components during 
the process. The new framework implements a flexible design 
process through which software architects make network 
specifications and hardware system limitations such as power 

capacity memory processes, computing speeds, and heat output. 
The development process becomes forward-facing through 
co-design strategies, so energy and performance guidelines 
directly steer AI model development, resulting in intelligent 
systems that efficiently handle power utilization. This approach 
consists of three main elements, which include Hardware-Aware 
Neural Architecture Search (HW-NAS), Dynamic Voltage and 
Frequency Scaling (DVFS) for in-operation power control, and 
aggressive model compression models through pruning together 
with quantization, all coordinated from within a single design 
system. This approach guarantees that the specific AI is designed 
to run properly where it is placed, be it a drone flying all by itself 
or an implant that monitors the patient’s condition and provides 
immediate analysis. Its advantages include enhanced power 
consumption, reduced time and space complexity of the model, 
and portability to different hardware platforms. Combining the 
hardware and software aspects successfully into one flow allows 
the method to be much more efficient and future-proof – making 
AI application deployment a more feasible process ready for the 
world of pervasive computing.

2. Literature Survey
2.1. Hardware Optimization Techniques

Hardware optimization is very important for AI, mainly 
in scenarios where low latency and low power consumption 
are desirable, such as inference. Strategies such as Dynamic 
Voltage and Frequency Scaling (DVFS) enable the processor 
to vary its power consumption depending on the activity levels, 
enhancing its power-sensitive capability. Power gating is 
another well-known technique that stops the supply of power 
to those blocks or sections of idle circuits5-8. Besides the above-
mentioned general techniques, the advancement in specialized 
hardware accelerators further boosted the performance of the 
AI workloads. TPU illustrates processors designed specifically 
for DL calculations, while Tensor Cores are part of the NVIDIA 
architecture. These accelerators provide high performance and 
power-flops through designing parallelism and unique data 
flow and may be considered well-established solutions for AI 
hardware design.

2.2. Software Optimization Methods

Among the largely applied strategies at the software level, 
one can select models with lower demand in computations and 
memory redundancy while the accuracy is still satisfactory. 
Some of the techniques used are Pruning, where unnecessary 
connections in neural networks are removed; Quantization, where 
the weights and activations of the signal are reduced to lower 
precision to reduce data size and computational complexity; and 
Knowledge distillation, where a small model (student) is trained 
to mimic a larger and complex model (master). 

These techniques are hugely beneficial in terms of reducing 
model size and accelerating inference, especially on the endpoints. 
Moreover, even higher-level compiler frameworks come with 
pre-optimized solutions to perform such optimizations, such as 
NVIDIA TensorRT and Apache TVM, which take in high-level 
model descriptions and generate efficient low-level code for the 
target hardware.

2.3. Co-Design Approaches

Originally referred to as HW/SW co-design, the system 
co-design has become widely accepted as an approach to 



3

Wali K., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

coordinate at the lowest level to optimally deliver all the 
capabilities of artificial intelligence deep learning. Solutions like 
Eyeriss and ShiDianNao all prove how it is possible to achieve 
sizeable heave lifts in terms of performance and energy efficiency 
when hardware software mapping is modality-specific on the 
algorithmic level. For instance, Eyeriss introduces a spatial 
architecture to minimize data movement, and ShiDianNao 
applies computation nearer to the sensor to minimize memory 
use. Nevertheless, most co-design techniques address one or 
the other optimization goals, such as performance or power, but 
not both in an integrated way. The main issue is that the basic 
idea is to devise solutions considering such factors as algorithm, 
hardware, and deployment paradigms.

2.4. Limitations of Current Systems

Nevertheless, there has been great advancement at both the 
hardware and software levels; most current solutions come with 
an optimistic perspective, taking only one side of the optimization. 
This approach leads to lower-than-optimal outcomes, as 
systems are not optimized for larger-scale applications and total 
co-design integration. Secondly, there are no specific methods 
and reference models for assessing the power consumption of 
AI systems in various contexts and environments. Therefore, 
evaluating the effectiveness of various co-design solutions 
becomes challenging, and wide implementation remains 
moderate. Closing this gap requires integrating hardware and 
software into a program with a single optimization vision.

3. Methodology
3.1. Overview of Proposed Framework

Figure 2:Overview of Proposed Framework.

• Hardware-aware Neural Architecture Search 
(HW-NAS): This component automatically generates neural 
network architecture optimized for certain kinds of limited 
hardware resources. As was already stated, the difference 
between NAS and HW-NAS is that the latter considers 
not only the model’s accuracy but also its characteristics, 
such as latency9-12, power consumption, and memory usage. 
This is done by developing the model structure that fits the 
characteristics of the target platform to achieve the final 
architecture of the HW-NAS with the best performance for 
a given resource constraint.

• DVFS-based Power Management: Dynamic Voltage and 
Frequency Scaling, or DVFS, is used to manage the power 
consumption during the inference. Thus, the workload to 
voltage and the operating frequency optimally match and 
can vary depending on the actual load in a given time interval 
to balance CPU power and power consumption. This means 
that the various Pathfinder configurations manage to turn 

down the overall power consumption while sparing the 
deployed model’s throughput and inter-call response time, 
which is beneficial in energy-stringent environments like 
edge devices.

Software Optimization (Pruning, Quantization)

• In order to decrease computational load, the proposed 
framework implements techniques like software-level 
pruning and software-level quantization. Pruning eliminates 
unnecessary parameters in the model, cutting down on the 
model’s size and accelerating evaluation. The downsides of 
quantization are the loss of weight and activation precision, 
smaller precision, which allows for more memory saving, 
and the usage of cheap integer arithmetic on most systems. 
These optimizations are done after NAS to optimize the 
architecture in terms of either accuracy or efficiency.

• Deployment on FPGA/SoC:The last set of architectural 
optimization codes is owned for energy-efficient hardware 
platforms like FPGA and SoC. These platforms are 
low-power and suitable for easily deploying AI inference; 
hence, they are widely used in embedded and edge 
systems. The deployment process comprises hardware-
agnostic compilation and synthesis, which will entail 
the model maximizing the use of parallel processing and 
reconfigurability of the target hardware.

3.2. System-Level Architecture

Figure 3: System-Level Architecture.

• HW-NAS Module: HW-NAS is the entry point of the 
system module and is in charge of searching the neural 
networks that achieve high accuracy and efficient mapping 
on the hardware. It checks how well the candidate models 
are with accuracy and loss and how effectively they perform 
on targeted platform hardware constraints such as latency, 
throughput, or power usage. This makes it possible to arrive 
at a system architecture optimized for deploying resource-
limited platforms such as FPGAs and SoCs.

• DVFS Controller: After the generation of the model, 
the hardware focuses on the DVFS (Dynamic Voltage 
and Frequency Scaling) Controller, which changes the 
voltage and frequency of the hardware depending on the 
computational quantity of the inference task. This module 
also minimizes power use while maintaining the essential 
performance levels in real time. It works as an efficiency 
regulator for power control during the usage of different 
amounts of processing load.

• Pruning & Quantization Module: However, in this 
module, the optimized architecture is advanced up to the 
software level by applying the software-level compression 
techniques. Pruning removes unnecessary weights and 
neurons from a network to reduce the model’s complexity. 
On the other hand, quantization involves converting 



J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Wali K.,

4

weights and activations to less precise data types for 
faster computation and lesser memory requirements. Such 
modifications are applied gradually to retain the model’s 
general accuracy while improving the time and resources 
required to run it, which will be useful when deploying it.

• FPGA/SoC Deployment: The last module focuses on 
mapping compressed and optimized models into FPGA 
or SoC platforms. They are synthesis, generation of the 
bitstream (in the case of FPGAs), and integration with 
runtime libraries. The reconfigurability of FPGAs and the 
fact that SoCs are low-power devices are the two features that 
make Such platforms suitable for AI inference in embedded 
systems. The deployment process caters to the efficient use 
of the given hardware to achieve high throughput while at 
the same time having low latency.

3.3. Hardware-Aware NAS

The proposed HW-NAS module involved in our framework 
is to create deep learning architectures with high accuracy and 
energy efficiency. As compared with the conventional NAS 
approach that usually only considers the performance, such as 
the accuracy or the loss, the proposed NAS algorithm optimizes 
electricity consumption into the cost function. [13-16] This makes 
the search process capable of ranking architectures that provide 
high accuracy within specific power and various resources used 
by the architecture needed for edge and embedded software 
applications. Besides developing the cost functions, the remaining 
points are now briefly described: Energy-aware cost function: It 
focuses on various system-level and hardware-level features such 
as latency, memory access cost, and power consumption during 
inference for a suitable search space that can be implemented on 
energy-constrained platforms like FPGAs and SoC. The NAS 
process starts by finding the desirable search space with different 
aspects that define a neural network’s architecture, including the 
number of layers, size of the filters, and activation function. 
They work based on a concurrent reward function, which can 
derive from reinforcement learning, metaheuristic, evolutionary 
algorithm, or NAS, aiming to identify the ones that achieve high 
accuracy and low energy consumption. The estimation of the 
potential performance of the models is also incorporated into the 
evaluation process, and it is displayed on the screen in terms of 
power and latency for each candidate model. This close coupling 
guarantees that all the selected architectures are optimal and 
feasible when certain aspects of the underlying hardware are 
considered. Our proposed HW-NAS module minimizes the 
use of such optimization and compression strategies in future 
works because it defines the architecture of the neural networks 
in accordance with the characteristics of the target hardware. It 
also helps by supplying architectures optimized for hardware for 
a shorter deployment time. This is because the extra introduced 
energy parameter makes NAS closer to efficient and sustainable 
AI, where intelligent systems are resourceful and resource-
conscious.

3.3 Dynamic Voltage and Frequency Scaling

Dynamic Voltage and Frequency Scaling, or DVFS, is one 
of our design’s most effective power management schemes to 
improve energy efficiency during inference. DVFS operates 
by decreasing the power supply voltage and frequency of 
the processor, depending on the workload. When the system 
utilization is low, or the processor is doing a task that does not 

need high processing, the voltage and the frequency are also 
low, resulting in low power consumption. On the other hand, 
the voltage and the frequency are adjusted upwards during high-
performance activities to meet the required performance levels. 
This dynamic adaptation makes the system efficient because it 
can interchange high energy consumption and computational 
processes. As for the DVFS controller itself, it is closely coupled 
with the AI inference flow in our case. It starts from the basic 
one, which oversees core operative parameters like the processor 
loads, inference rate, and temperature to find the best verbose 
frequency pair. It can be threshold-based, involves certain 
parameters beyond which the decision to offload is triggered, 
and machine learning indicates that the decision is made based 
on future workload patterns, etc. The integration of DVFS is 
particularly useful for AI applications running on edge devices 
or on the platforms used in industrial devices’ manufacturing, 
where energy sources are restricted and thermal management 
is crucial. However, if combined with a specific module of 
hardware-aware NAS and software optimization, the overall 
system will achieve higher energy savings while keeping an 
optimal accuracy of inference. For instance, as demonstrated 
earlier, if the application of pruning and quantization leads to 
decaying computational complexities, DVFS can also scale 
down the power consumption to the desired extent of the targeted 
system hardware. This synchronization makes the system very 
flexible and able to work effectively under changing conditions. 
Nevertheless, DVFS enhances the sustainability of AI systems 
and increases the useful lifetime of battery-driven gadgets; 
therefore, it should be considered an essential power adaptive 
AI technique.

3.4. Software Optimization Techniques

Figure 4: Software Optimization Techniques.

• Pruning: Pruning is the technique of sieving out unnecessary 
neurons, weights, and whole layers in a neural network that 
helps diminish the neural network’s size without much 
effect on the performance. From this perspective, pruning 
facilitates the removal of the parameters that do not hold 
much importance to the output produced by the model, 
thus making the model less computationally expensive. 
[17-20] As such, it assists in attaining quicker and more 
efficient evaluation with minimal power use, perfect for 
constrained platforms. Structured pruning tries to prune 
whole layers of neurons, which might help in simplifying 
the overall architecture of the model in some cases to make 
it more efficient in terms of computations; on the other 
hand, unstructured pruning controls only the weights of the 
neurons, having non-zero values.

• Quantization: Quantization means that the precision of 
weights and computations is less; it narrows the model from 



5

Wali K., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

a 32-bit floating point to an 8-bit integer. This reduces the 
required memory and allows for computation at a higher 
speed and in less time on systems that use low-precision 
calculations. It is possible to perform quantization-aware 
training or post-training quantization based on the accuracy 
needed. This helps enhance the inference speed and save 
power consumption, which is crucial for using AI on 
resource-limited devices.

• Model Compression (Huffman Coding): Huffman coding 
is a lossless model used to encode one or more values that 
occur frequently in a set of shorter code values. It is common 
to find patterns repeated many times in a model after 
pruning and quantizing weights, thus making it good for 
Huffman’s kind of coding. This further reduces the needed 
storage space without changing the model’s behavior in 
the inference process. This is most advantageous when the 
models are required to operate in networks or when there 
is limited storage or flash memory available in the devices.

4. Results and Discussion
4.1. Experimental Setup

• MNIST: A benchmark of balanced and easily 
distinguishable images from the MNIST dataset with 
tens of thousands of grayscale figures of handwriting 
numbers from 0 to 9 is perfect for testing the lightweight 
neural network. As a simple and relatively small model 
with low parameters, MNIST is a suitable candidate for 
testing other energy-saving technologies, such as pruning 
and quantization. It helps us determine how optimization 
performs on a minimally sufficient footing, which is direly 
necessary when using it in ultra-low-power edge devices or 
microcontrollers.

• CIFAR-10: CIFAR-10 is a more complex data set with 
50,000 pictures that measure 32×32 pixels and are colored 
with 10 types of objects. It has reasonable computation and 
memory usage and is useful in evaluating small- to medium-
scale models. Applying our framework to CIFAR-10 can 
demonstrate how our optimization techniques, especially 
hardware-aware NAS and DVFS, are implemented on the 
larger model without significantly losing accuracy and 
energy consumption.

• MobileNet on ImageNet: MobileNet, when used on 
the large-scale ImageNet dataset, can be considered a 
high-complexity real-world workload on AI. Images in 
ImageNet consist of over one million high-resolution 
images belonging to 1000 categories. MobileNett is 
designed for limited resource environments such as mobile 
and embedded applications. To assess the performance of 
the proposed framework, we apply all the optimization 
techniques, including NAS, pruning, quantization, and 
DVFS, to the MobileNet model and run it for inference 
on the ImageNet dataset. Further, it demonstrates the 
compatibility of the developed framework with FPGAs and 
SoCs for high-performance and, at the same time, energy-
efficient inference.

4.2. Performance Metrics

When measuring the efficiency of the power-aware AI 
framework, the metric used the most was the balance between 
accuracy and power consumption, especially in deployment on 

FPGA. This was aimed at finding out how much energy efficiency 
one could get without a proportionate loss of the performance of 
the neural networks in their predictive ability. To gain insight into 
this trade-off, we utilized a version of each model, which was 
fine-tuned on MNIST, CIFAR-10, and MobileNet on ImageNet. 
Then, we realized the system-level power information during 
inference on various hardware platforms. This has resulted 
from power measurements taken using the equipment installed 
in the onboard system and those external measurement tools 
that enable power readings to be taken when the system is in 
operation.

We assessed the performance of each model in four aspects: 
without optimization, with quantization at 8-bit, with pruning, and 
with both hardware-aware NAS, frequency and voltage control, 
pruning, and quantization optimization. In each configuration, 
one took the inference power consumption and the classification 
accuracy to estimate the performance-efficiency trade-off. This 
metric is critical for the ‘edge’ AI, where physical electronics 
are tight on power and thermal envelopes. Should fractions of 
a watt reduce the current, it can have a vast effect on battery 
life, the reliability of the system, and the cost of operations. 
Furthermore, the evaluation of the decrease in accuracy for 
each optimization step helped us define the acceptable limits of 
the compression and power scaling. Our findings indicate that 
almost all optimizations reduced the power consumption range 
of 30-60% and a change of inaccuracy by 1-2%. This supports 
the notion that an intelligent co-design approach can help to 
develop efficient AI systems that do not require re-training from 
the beginning or cannot be applied in real-world scenarios. 
Overall, the established figure of merit based on the power vs. 
accuracy trade-off can be considered very effective and useful for 
expressing the results of attempts at deploying AI applications 
that consider hardware characteristics.

4.3. Observations

Table 1: Power vs Accuracy Trade-offs.
Model Baseline Power 

(W)
Optimized Power 
(W)

Accuracy Loss 
(%)

MNIST 1.2 0.6 0.1

CIFAR-10 2.5 1.3 1.8

ImageNet 10.0 6.5 2.5

• MNIST: For the MNIST dataset, the optimization pipeline 
reviewed provided a reduction of power consumption 
by 50% from 1.2W in the base model of the network to 
0.6W in the optimized model of the network. Surprisingly, 
this was achieved with a marginal impact on the model’s 
accuracy, resulting in a mere 0.1% loss, implying efficiency 
in pruning and quantization in simple structured first-
generation models. This reflects the effectiveness of the 
proposed framework for ultra-low-power systems such as 
wearables and MCU-based systems since it optimizes the 
use of battery power.

• CIFAR-10: When it comes to CIFAR-10, for example, the 
optimizations allowed to cut the power consumption from 
2.5W to 1.3W, which constitutes a 48% power reduction 
and still maintains the loss of 1.8%; this is arguably a fair 
trade-off considering the type of application that benefits 
from mid-range image classification, especially where 
energy consumption is of utmost significance, such as in 



J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Wali K.,

6

drones and IoT gateways. These findings are expected since 
the performance of the co-optimization techniques is not 
sensitive to the model complexity.

• ImageNet (MobileNet): Regarding power consumption 
of the MobileNet on ImageNet, the workload of the 
greatest intensity diminished from 10.0W to 6.5 W when 
those procedures were optimized, hence curbing energy 
consumption by 35%. Although the accuracy fell by 
2.5%, which means it is several percent lower than in 
the first experiment, such degradation is acceptable for 
several applications where energy consumption is a critical 
issue compared to classification accuracy. These results 
emphasize the effectiveness of applying the described 
framework when dealing with large-scale, high-speed AI 
tasks that do not overwhelm the hardware, such as smart 
cameras or autonomous robots.

Figure 5: Graph representing Power vs Accuracy Trade-offs.

5. Discussion
Integrating IT hardware and software may be considered 

reliable and efficient for achieving energy-efficient AI systems 
in modern contexts. Different from the existing pipelines 
that typically segment the hardware and software into two 
independent stages, our framework includes a full software and 
hardware co-design in the following manners: Hardware-aware 
NAS, DVFS, model pruning, and quantization are processed 
in a unified pipeline here. This integration ensures a very good 
relationship between the machinery used in the algorithms and 
the hardware to push the efficiency of both up, meaning that 
a developer has to make very few changes to the models to 
achieve power-saving benefits. The design drastically cuts down 
the time required for development while keeping the accuracy 
pres elsewhere at par with most AI applications. The fourth and 
one of the most effective points I would like to argue is that 
we are platform-independent in our approach. It also allows 
easy framework tuning towards low-power microcontroller-
based SoCs or high-performance FPGA systems. It should 
also be noted that the proposed approach is highly flexible in 
the sense that NAS, pruning, or DVFS can be set individually 
or jointly depending on the application’s energy or latency 
requirements. For instance, compacted embedded systems may 
gain more from intensive pruning and quantization to optimize 
power consumption and yield greater power savings, while edge 
servers can deliberately regulate and control the balance between 
power and performance using DVFS and custom NAS solutions. 
Moreover, the framework serves as a basis for enhanced AI 
architectures for the future, especially when it comes to energy-
scarce environments associated with edge computing, robotics, 

and IoT devices. It meets an urgent and fundamental requirement 
of an industry with no shortage of AI solutions but a dire need 
to make these solutions lighter on computation and power. Thus, 
making energy efficiency a first-class design goal co-design 
strategy allows empowering the developers and creating not 
only efficient, intelligent systems but also robust, trustworthy, 
and ready to perform in the environments where they will be 
deployed. These characteristics, therefore, make the framework 
a genial apparatus that supports fast and portable AI across 
different platforms.

6. Conclusion
Due to the recent focus on AI in various low-power systems 

such as edge devices, IoT devices, and other autonomous 
systems, there is a need for efficient architectures that will 
implement and run deep learning models without compromising 
on energy consumption. This paper aims to propose a hardware-
software co-design to address this issue through four HW-NAS, 
DVFS, pruning, and quantization. Every aspect of our pipeline 
later shows how we can achieve a high level of power reduction, 
thereby proving that it is possible to achieve a performance 
drop of up to fifty percent. At the same time, achieving minimal 
diminution of accuracy will make the solution very appropriate 
for use in embedded AI. We have provided ample evidence 
in support of the proposed framework on three data sets and 
architectures, namely MNIST, CIFAR-10, and MobileNet on 
ImageNet. During the hardware assessment of the architecture 
and the runtime, by using the DVFS technique, we could develop 
efficient measures that would reduce static and dynamic power 
consumption. The pruning and quantization, the software-level 
techniques proposed at this stage, helped eliminate additional 
memory consumption and computation load without retraining 
the model. Altogether, these optimizations resulted in 3x energy 
efficiency improvements against traditional GPU-based setups; 
this is the benefit of specific FPGA and SoC designs for AI 
inferences.

That said, several directions for future research are evident 
from this study. First, it is demonstrated that incorporating RL 
can enhance DVFS control to work in real-time with workload 
adaptively by responding to system and environmental 
variations. Second, although the framework has been developed 
based on CNNs, tying it to the transformer models now widely 
used in NLP and vision tasks could lead to new opportunities for 
optimizing even larger and more complicated models. Last but 
not least, there is a vast opportunity for employing this co-design 
within cloud-edge AI pipelines so the portions of computational 
models can be properly divided between the centralised servers 
and edge devices owing to power, latency, and connectivity 
considerations. Therefore, we stress that designing the next-
generation AI systems would require a paradigm that promotes 
power awareness at its core, as illustrated by POWERFUL. In 
particular, the focus of such networks is on the top-of-the-rack 
placement, as well as the power, size, and thermal constraints in 
the edge environments. This work provides the groundwork for 
such solutions and presents a practical and efficient way toward 
the realization of sustainable and intelligent edge computing.

7. References

1. Jouppi NP, Young C, Patil N, et al. In-datacenter performance 
analysis of a tensor processing unit. In Proceedings of the 44th 
annual international symposium on computer architecture, 
2017; 1-12.



7

Wali K., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

2. Markidis S, Der Chien SW, Laure E, et al. Nvidia tensor core 
programmability, performance & precision. In 2018 IEEE 
international parallel and distributed processing symposium 
workshops (IPDPSW). IEEE, 2018; 522-531.

3. Chen YH, Krishna T, Emer JS, et al. Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional 
neural networks. IEEE Journal of solid-state circuits, 2016; 52: 
127-138.

4. Du Z, Fasthuber R, Chen T, et al. ShiDianNao: Shifting vision 
processing closer to the sensor. In Proceedings of the 42nd 
annual international symposium on computer architecture, 
2015: 92-104.

5. Han S, Mao H, Dally WJ. Deep compression: Compressing 
deep neural networks with pruning, trained quantization, and 
Huffman coding. arXiv preprint arXiv:1510.00149, 2015.

6. Jacob B, Kligys S, Chen B, et al. Quantization and training of 
neural networks for efficient integer-arithmetic-only inference. In 
Proceedings of the IEEE conference on computer vision and 
pattern recognition, 2018; 2704-2713.

7. Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural 
network. arXiv preprint arXiv:1503.02531, 2015.

8. Venkatesh G, Sampson J, Goulding N, et al. Conservation 
cores: reducing the energy of mature computations. ACM 
Sigplan Notices, 2010; 45: 205-218.

9. Chen T, Moreau T, Jiang Z, et al. {TVM}: An automated {End-to-
End} optimizing compiler for deep learning. In 13th USENIX 
Symposium on Operating Systems Design and Implementation 
(OSDI 18), 2018; 578-594.

10. Horowitz M. 1.1 computing’s energy problem (and what we 
can do about it). In 2014 IEEE International Solid-state Circuits 
Conference Digest of technical papers (ISSCC). IEEE, 2014; 
10-14.

11. Reddi VJ, Cheng C, Kanter D, et al. Mlperf inference benchmark. 
In 2020 ACM/IEEE 47th Annual International Symposium on 
Computer Architecture (ISCA). IEEE, 2020; 446-459.

12. Lane ND, Warden P. The deep (learning) transformation of 
mobile and embedded computing. Computer, 2018; 51: 12-16.

13. Sze V, Chen YH, Yang TJ, et al. Efficient processing of deep 
neural networks: A tutorial and survey. Proceedings of the IEEE, 
2017; 105: 2295-2329.

14. Yantır HE, Eltawil AM, Salama KN. A hardware/software 
co-design methodology for in-memory processors. Journal of 
Parallel and Distributed Computing, 2022; 161: 63-71.

15. Yan Z, Lu Q, Jiang W, et al. Hardware–Software Co-design 
of Deep Neural Architectures: From FPGAs and ASICs to 
Computing-in-Memories. In Embedded Machine Learning 
for Cyber-Physical, IoT, and Edge Computing: Software 
Optimizations and Hardware/Software Codesign. Cham: 
Springer Nature Switzerland, 2023; 271-301.

16. Van den Hurk J, Jess JA. System level hardware/software 
co-design: an industrial approach. Springer Science & Business 
Media, 1997.

17. De Michell G, Gupta RK. Hardware/software co-design. 
Proceedings of the IEEE, 1997; 85: 349-365.

18. Skliarova I, Sklyarov V, Skliarova I, et al. Hardware/software 
co-design. FPGA-BASED Hardware Accelerators, 2019; 
213-241.

19. Choi K, Soma R, Pedram M. Dynamic voltage and frequency 
scaling based on workload decomposition. In Proceedings of 
the 2004 International Symposium on Low power electronics 
and design, 2004; 174-179.

20. David H, Fallin C, Gorbatov E, et al. Memory power management 
via dynamic voltage/frequency scaling. In Proceedings of the 
8th ACM International Conference on Autonomic computing, 
2011; 31-40.


	_GoBack

