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1. Introduction
Analyzing chest X-rays is complex and time-consuming, 

often demanding the identification of multiple abnormalities. 
Radiologists typically perform this task manually, straining 
healthcare resources. The complexity of the chest anatomy in these 
images, combined with the subjective nature of interpretation, 
can result in inconsistent and potentially biased diagnoses1. This 
highlights the need for automated systems to improve efficiency 
and accuracy in chest X-ray analysis. Furthermore, image 

quality and data-related issues can hinder accurate interpretation. 
To assist doctors with this, computer-aided detection (CAD) 
systems are designed to aid in the analysis of medical images2. 
These systems analyze digital medical visuals, pinpointing 
characteristic patterns and highlighting potentially problematic 
regions, like disease indicators, to support diagnostic decisions. 
CAD systems integrate artificial intelligence, computer vision 
and medical image processing techniques. In CAD systems, 
a crucial step is segmentation, which accurately isolates areas 
of concern, such as tumors, from normal tissue. This precise 
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separation enhances the reliability of subsequent analyses, like 
measuring tumor size or tracking disease progression3.

Essentially, Machine Learning (ML), a type of Artificial 
Intelligence (AI), allows computers to learn from data 
independently, without requiring explicit instructions. 
This capability enables them to automatically improve 
their performance through experience, minimizing human 
involvement. This learning process is achieved through 
algorithms that identify patterns and relationships within 
datasets. These algorithms can then be applied to new, unseen 
data to make predictions or decisions. ML algorithms excel 
at identifying patterns, handling multiple objectives and 
generating predictions4,5. Deep learning, a subset of ML, has 
gained significant traction across diverse areas, including defect 
detection6 and virtual reality applications7,8. The increasing 
need to incorporate advanced AI and ML techniques for image 
classification and segmentation is fueled by technological 
progress9. For example, research is being conducted on how to 
understand the inner workings of deep learning applied to error-
correcting codes, examining their design, decoding processes 
and benefits compared to conventional methods. This type 
of research is crucial for building trust and transparency in 
AI-driven medical applications. Study10 demonstrates that deep 
learning, when combined with methods that improve image 
contrast, can effectively automate the identification of white 
matter lesions in MRI scans of multiple sclerosis patients. This 
automation has the potential to significantly improve the speed 
and accuracy of diagnosis, leading to better patient outcomes. 
Research11 has shown that the bladder’s ability to expand easily 
when first filling and its efficient emptying (over 90%), is due to 
large folds in its dome, not small mucosal rugae as previously 
thought.

Deep learning has revolutionized image segmentation by 
providing numerous methods that greatly improve accuracy 
and speed. A key example is U-Net, a convolutional neural 
network designed for biomedical image segmentation. Its 
U-shaped design, featuring an encoder and decoder, allows it to 
achieve precise segmentations even with limited training data. 
This makes U-Net particularly valuable in medical imaging, 
where obtaining large, annotated datasets is often challenging. 
Furthermore, its ability to capture both local and global 
contextual information contributes to its superior segmentation 
performance12. Unet++ enhances medical image segmentation 
by using nested, interconnected pathways between the encoder 
and decoder components. These improved connections 
minimize differences in the information being processed by the 
encoder and decoder, making it easier for the learning algorithm 
to optimize the segmentation. This results in more accurate 
and detailed segmentation outcomes, particularly in complex 
medical images13,14. This method improves upon the standard 
U-Net by adding residual blocks, which help prevent the 
vanishing gradient problem and allow for the creation of more 
complex, deeper networks. This work introduced a 3D U-Net 
design specifically for identifying and isolating lung tumors in 
both CT scans and X-ray images15.

Attention mechanisms, modeled after how humans visually 
focus, have demonstrated significant effectiveness in various 
image processing and natural language processing tasks. They 
allow models to selectively concentrate on the most relevant parts 
of the input data, improving performance and interpretability. 

This method accurately captures the connections between words 
or events, even when they are far apart in a sequence. This is 
particularly useful in tasks where long-range dependencies 
are important, such as summarizing lengthy documents 
or understanding complex narratives16. surveys the role of 
positional encoding in transformer-based time series models, 
highlighting various encoding methods, their effectiveness 
and open challenges in the field. These mechanisms are used 
in a wide range of applications, including image classification, 
object detection, semantic segmentation, video analysis, image 
creation, 3D vision, multi-modal tasks and self-supervised 
learning. Their versatility stems from their ability to dynamically 
weigh the importance of different input features, allowing 
models to adapt to diverse and complex data patterns. Study17 
improves facial recognition precision by intelligently merging 
features from several models, utilizing attention mechanisms and 
information bottleneck principles18. This work presents a novel 
one-stage pedestrian detection system that integrates channel 
and spatial attention mechanisms into CNN architecture19. This 
work suggested a U-Net architecture improved by using multiple 
encoders for better feature extraction and adding attention 
mechanisms within the decoders to accurately focus on important 
features20. This method enhances the U-Net architecture by 
adding multi-scale spatial attention and dilated convolutions, 
allowing it to efficiently gather contextual information.

This study advances lung segmentation in chest X-rays 
by fusing U-Net with a combined attention module (CBAM), 
boosting accuracy through integrated channel, spatial and pixel 
focus.

•	 Improved U-Net: Integrating CBAM into U-Net allows 
the model to grasp broader context and concentrate on key 
areas, resulting in richer feature understanding and superior 
image segmentation. This enhanced focus translates to more 
precise and detailed segmentation results.

•	 CBAM with triple attention: Combining channel, spatial 
and pixel attention substantially improves the model’s 
ability to pinpoint important details in X-ray images. 
Channel attention highlights key feature channels, spatial 
attention focuses on crucial locations and pixel attention 
emphasizes individual pixels, all contributing to more 
accurate and precise segmentation. This multi-faceted 
attention approach allows the model to learn complex, 
hierarchical representations of the image data. By focusing 
on the most informative elements, the model minimizes the 
impact of irrelevant information and noise, leading to more 
robust segmentation results.

Integrating CBAM with U-Net represents a notable 
advancement in medical imaging, potentially leading to 
more accurate diagnoses and improved patient care. The 
effectiveness of this technique is evaluated using metrics like 
the Dice coefficient and Jaccard similarity, which are crucial for 
measuring segmentation accuracy by comparing predicted and 
actual anatomical boundaries, as supported by research21. These 
metrics provide a quantitative measure of how well the model’s 
predictions align with ground truth segmentations, ensuring 
reliable performance assessment.

This paper is structured as follows: Section II describes the 
Chest X-ray dataset and preprocessing steps. Section III explains 
the proposed method, detailing the integration of CBAM into 
U-Net. Section IV presents the simulation results, including 
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training and validation details. Finally, Section V concludes the 
paper with a summary of the key findings and contributions.

2. Description of the Chest X-ray Lung Segmentation 
Dataset

This section details the dataset and preprocessing steps 
used to train and evaluate our lung segmentation model. We 
utilized a publicly available Chest X-ray dataset from Kaggle, 
supplemented with data augmentation techniques to enhance 
model robustness and generalization. This comprehensive 
approach ensures that our model is trained on a diverse range 
of images, improving its applicability to real-world clinical 
scenarios.

2.1. Dataset description

To train models for automatic lung identification in 
X-rays, researchers utilized a dataset from Kaggle, consisting 
of chest X-ray images and their corresponding lung masks22. 
This dataset is valuable for medical research, particularly in 
automated tuberculosis screening. It contains X-ray images 
with segmentation masks, though some masks may be missing, 
requiring users to verify mask availability for each image. The 
dataset includes 360 normal and 344 abnormal X-ray images, 
all labeled by radiologists. (Figure 1) displays sample X-ray 
images and their masks from the training and validation sets.

Figure 1: Showing chest X-ray images, alongside the lung 
masks created by expert radiologists, used for both training and 
validating the model.

This dataset provides a wide spectrum of lung abnormalities, 
including effusions and miliary patterns, making it a valuable 
tool for creating algorithms that identify and segment lung 
diseases in chest X-rays. Its diverse collection of normal and 
abnormal images offers a robust foundation for analysis. This 
dataset bridges medical expertise and AI, fostering advancements 
in automated diagnostics. The careful data collection and 
preparation make it essential for researchers pushing the 
boundaries of medical image analysis. Its utilization promotes 
the development of more accurate and efficient diagnostic tools, 
ultimately improving patient outcomes.

2.2. Image augmentation and preparation
In order to optimize neural network training for lung 

segmentation in chest X-rays, the initial dataset was significantly 
enlarged through a series of data augmentation techniques. 
Key methods included contrast adjustment, Gaussian blurring, 
random rotations, horizontal flips and their subsequent 
combinations. Contrast enhancement improved feature visibility, 
while blurring mitigated noise and prevented overfitting. 
Rotations and flips ensured the model’s adaptability to varied 
image orientations, addressing potential biases related to patient 
positioning and anatomical variations. This comprehensive 
augmentation strategy, resulting in a sixfold increase in dataset 
size, effectively simulated diverse imaging conditions, thereby 
enhancing the network’s robustness and accuracy in real-world 
clinical applications. Furthermore, these augmentations helped 
the model learn to recognize lung features under challenging 
conditions, such as varying lung sizes, shapes and textures, 
which are commonly encountered in clinical practice. The 
goal was to create a model that could generalize well to unseen 
data, ensuring reliable performance across a diverse patient 
population. (Figure 2) illustrates the augmented images and 
their associated masks, showcasing the effects of the applied 
enhancement and augmentation techniques.

Figure 2: Visual representation of augmented images with 
their corresponding masks, utilizing the specified augmentation 
technique.

3. Methodology
This section begins by outlining the U-Net architecture 

as applied to lung segmentation in X-ray images. We then 
describe the Convolutional Block Attention Module (CBAM) 
and introduce our proposed enhanced U-Net model, which 
incorporates CBAM to improve segmentation accuracy.

3.1. U-Net architecture

U-Net, a convolutional neural network, is specifically 
designed for biomedical image segmentation. Its “U” shape 
comes from its symmetrical encoder-decoder structure. The 
encoder compresses the input image into a detailed feature 
map, reducing spatial size while increasing feature complexity 
via convolution and pooling. The decoder then reconstructs 
this map, using transposed convolutions to increase spatial 
dimensions for precise localization. Skip connections between 
encoder and decoder layers transfer contextual information, 
improving segmentation accuracy. This combination of context 
and localization makes U-Net highly effective for medical 
imaging. (Figure 3) depicts the U-Net architecture for lung 
segmentation.
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Figure 3: Schematic representation of the U-Net architecture 
as implemented for lung segmentation in chest X-ray images, 
showcasing the encoder-decoder structure and skip connections.

3.2. CBAM model

The CBSM is engineered to improve the accuracy of lung 
segmentation in chest X-rays using the U-Net architecture, 
especially when training data is scarce, unlike standard CNNs. 
By integrating channel, spatial and pixel attention, it significantly 
enhances the model’s ability to concentrate on relevant features 
in X-ray images.

•	 Channel attention: This focuses on relationships between 
feature channels, allowing the model to prioritize the most 
informative channels and enhance feature identification. 
This is achieved by learning to assign different weights to 
each channel, effectively highlighting the most relevant 
feature maps.

•	 Spatial attention: This directs the model’s focus to critical 
spatial locations, improving localization accuracy by 
emphasizing spatial feature correlations. By generating 
a spatial attention map, the model can selectively attend 
to specific regions of the input image, ignoring irrelevant 
background information.

•	 Pixel attention: This enables the model to concentrate on 
individual pixels, refining focus and boosting segmentation 
accuracy by prioritizing the most informative pixels. 
This fine-grained attention allows for precise boundary 
delineation and detailed feature extraction, particularly 
important in medical image analysis.

These mechanisms work together to create a richer feature 
representation, improving image segmentation performance. 
They enable the model to better capture global context and 
focus on specific regions. Let’s consider a feature map F with 
dimensions H×W×C, where H is the height, W is the width and 
C is the number of channels. The CBSM dynamically adjusts 
weights to pinpoint significant regions in complex scenes. 
It employs a 1D channel attention map M_C∈R^(1×1×C), a 
2D spatial attention map M_S∈R^(H×W×1) and a 2D pixel 
attention map M_P∈R^(H×W×1). The CBSM refines the input 
data sequentially using M_C, M_S and M_P. Therefore, the 
entire process of the enhanced CBSM can be represented as:

The channel attention-refined feature map is:

F_C=(M_C (F)+1)×F. 		  (1)

The spatial attention-refined intermediate feature map is:

F_S=(M_S (F_C )+1)×F_C. 	 (2)

The final feature map, refined by pixel attention, is:

F_P=(M_P (F_S )+1)×F_S, 	 (3)

Where × indicates element-wise multiplication and + 
denotes element-wise addition. The attention maps M_C, M_S 

and M_P are broadcasted to match the dimensions of the feature 
maps they refine. The final output, F_P, represents the feature 
map sequentially refined by channel, spatial and pixel attention, 
providing a more focused and detailed representation for chest 
X-ray lung segmentation. This process enables finer control 
over pixel-level attention, potentially enhancing segmentation 
accuracy. The CBSM architecture is illustrated in (Figure 4).

Figure 4: Visualization of the channel, spatial and pixel attention 
mechanisms in the CBSM model.

Based on Figure 4, the mathematical expressions for the attention 
mechanisms are as follows:

M_C=σ(CNN_2 (ReLU(CNN_1 (GP_avg (x))))), 	 (1)

M_P=σ(CNN_2 (ReLU(CNN_1 (x)))), 		  (2)

M_S=σ(CNN(concat(GP_max (x),GP_avg (x)))), 	 (3)

Here’s a breakdown of the components:

•	 x: The input feature map to the attention mechanism.
•	 GP_avg: Global average pooling, which reduces spatial 

dimensions while preserving channel information.
•	 GP_max: Global max pooling, which also reduces spatial 

dimensions while preserving channel information.
•	 CNN_1 and CNN_2: Convolutional neural network layers 

used to learn channel-wise dependencies.
•	 ReLU: The Rectified Linear Unit activation function, which 

introduces non-linearity.
•	 σ: The Sigmoid activation function, which normalizes the 

output to a range between 0 and 1.

Incorporating the CBSM after each down-sampling and 
up-sampling stage within the U-Net architecture allows the 
network to concentrate on the most critical features at each 
processing level. This is achieved by refining feature maps through 
the CBSM, which selectively amplifies salient information 
across channel, spatial and pixel domains. This enhancement is 
particularly beneficial when dealing with limited training data, 
as it enables the network to maximize information utilization by 
highlighting the most informative regions of the input images. 
(Figure 5) visually represents the U-Net architecture augmented 
with CBSM for lung segmentation in chest X-ray images.

Figure 5: Diagram of the U-Net architecture integrated with the 
CBSM for lung segmentation in chest X-ray images, showcasing 
the strategic placement of CBSM after each down-sampling and 
up-sampling step.
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4. Simulations
This section evaluates the proposed method’s performance 

on chest X-ray segmentation. We utilize the Dice similarity 
coefficient and Jaccard index for assessment, comparing predicted 
segmentation masks with ground truth data. Additionally, 
precision, recall and accuracy are used to comprehensively 
evaluate segmentation performance.

4.1. Effectiveness of the proposed method using dice 
similarity coefficient and jaccard index

Semantic segmentation or pixel-wise classification, is a 
crucial technique where each image pixel is assigned to a specific 
category. This is essential in fields like medical imaging for 
tissue delineation, remote sensing for land cover classification 
and autonomous driving for road scene understanding. The goal 
is to label each pixel, ensuring pixels with the same label share 
attributes. Model performance is evaluated using the Jaccard 
index and Dice coefficient, which measure segmentation 
accuracy. These metrics rely on true positives (TP), false 
positives (FP), false negatives (FN) and true negatives (TN). TP 
and TN represent correctly identified tuberculosis and normal 
images, respectively, while FP and FN represent incorrectly 
identified normal and tuberculosis images. The Jaccard index 
or Intersection over Union (IoU), measures the overlap between 
predicted and actual labels, calculated as the intersection divided 
by the union:

IoU=TP/(TP+FP+FN) (4)

The Dice coefficient or Dice similarity coefficient, measures 
the overlap between two samples. It’s calculated as twice the 
intersection of the predicted and true labels, divided by the sum 
of their sizes. The formula is:

Dice=(2×TP)/(2×TP+FP+FN) (5)

These metrics are particularly useful in semantic segmentation 
because they quantify the overlap between predicted and actual 
segmentations. The Dice Similarity Coefficient and Jaccard 
Index results are shown in (Figures 6 and 7).

Figure 6: Dice similarity coefficient results comparing U-Net, 
U-Net with the conventional CBSM21 and U-Net with the 
proposed CBSM.

The referenced figures likely illustrate the comparative 
performance of three U-Net architectures for chest X-ray image 
segmentation, as measured by the Dice similarity coefficient and 
Jaccard index. The U-Net without CBSM, acting as the baseline, 
lacks attention mechanisms and thus processes all features 
uniformly, resulting in the lowest performance. The U-Net with 
conventional CBSM integrates channel and spatial attention, 

allowing it to differentially weight channels and concentrate on 
pertinent image regions, leading to improved performance over 
the baseline. The U-Net with proposed CBSM further enhances 
this by incorporating pixel attention, enabling fine-grained focus 
on individual pixels, which is crucial for detailed segmentation 
tasks and results in the highest Dice similarity coefficient.

Figure 7: Jaccard Index (IoU) comparison between U-Net, 
U-Net with conventional CBSM21 and U-Net with the proposed 
CBSM.

4.2. Comparison between the ground truth and segmentation 
masks

Visual comparison between automated segmentation masks 
and manual annotations is vital for evaluating accuracy, validating 
quantitative metrics, identifying algorithmic limitations, 
supporting clinical decisions and improving education and 
communication in medical imaging. (Figure 8) provides a visual 
comparison of chest X-ray segmentation results from various 
U-Net architectures.

Figure 8: Visual comparison of lung segmentation results 
across three sample chest X-ray images. (A) Original chest 
X-ray image. (B) Manually annotated ground truth lung mask. 
(C) Segmentation result from the standard U-Net architecture. 
(D) Segmentation result from the U-Net architecture with 
conventional CBSM. (E) Segmentation result from the U-Net 
architecture with the proposed CBSM.

The sequential transition from panels C to E in Figure 8 
effectively demonstrates the improved segmentation accuracy 
attained by integrating progressively advanced attention 
mechanisms into the U-Net model. In particular, the introduced 
CBSM enhances conventional channel and spatial attention 
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by incorporating pixel-level refinement, allowing for a more 
detailed and precise analysis of chest X-ray images. This results 
in the most optimized segmentation performance.

4.3. Segmentation performance evaluation using various 
metrics

In this section, we conduct an in-depth evaluation of 
additional performance metrics to assess the effectiveness of our 
proposed segmentation approach. These metrics are determined 
using the following formulas:

•	 Accuracy: The ratio of correctly identified cases (including 
both true positives and true negatives) to the total number 
of cases analyzed.

Accuracy= (TP+TN+FP+FN)/(TP+FN) (6)

•	 Recall: The ratio of correctly detected positive cases to the 
total number of actual positive cases.

Recall = TP/(TP+FN) (7)

•	 Specificity: The ratio of correctly detected negative cases to 
the total number of actual negative cases.

Specificity= TN/(FP+TN) (8)

•	 Precision: The ratio of correctly identified positive cases to 
the total number of predicted positive cases.

Precision = TP/(TP+FP). (9)

•	 F1 Score: The F1-score, which represents the harmonic 
mean of precision and sensitivity, balances both metrics, 
particularly in scenarios where one may hold greater 
significance than the other.

F1-score =2 (Precision ×Recall )/(Precision +Recall ) . (10)

The presented metrics collectively provide a comprehensive 
evaluation of the deep learning model’s effectiveness in pixel-
level classification for chest X-ray images. (Table 1) outlines 
these performance indices.

Table 1: The performance metrics for U-Net, U-Net with the 
conventional CBSM and U-Net with the proposed CBSM.

Method Accuracy 
(%)

Recall 
(%)

Specificity 
(%)

Precision 
(%)

F1-score 
(%)

U-net 96.2 95.30 93.54 96.68 95.98

U-net with the 
conventional 
CBSM21

97.8 95.57 95.81 97.14 96.34

U-net with the 
proposed CBSM 98.8 97.50 97.64 97.68 97.58

(Table 1) showcases the incremental performance gains 
realized through the progressive integration of attention 
mechanisms within the U-Net architecture. While the baseline 
U-Net demonstrates commendable results, notably a 96.2% 
accuracy and 95.98% F1-score, its specificity indicates a potential 
for improvement in accurately discerning non-relevant data. The 
introduction of the conventional CBSM, incorporating channel 
and spatial attention, yields a notable enhancement across all 
metrics, culminating in a 96.34% F1-score. Further refinement 
is achieved with the proposed CBSM, which likely leverages 
pixel-level attention, resulting in a peak accuracy of 98.8%, a 
97.58% F1-score and a significantly improved specificity of 
97.64%. These results underscore the efficacy of the proposed 

CBSM in delivering a more precise and nuanced analysis of 
chest X-ray images, thereby achieving superior segmentation 
outcomes.

5. Conclusion
This study presents a novel approach to lung segmentation 

in chest X-rays by enhancing the U-Net architecture with an 
innovative CBAM. This module effectively combines three 
distinct attention mechanisms-channel, spatial and pixel 
attention-to refine the model’s structure, leading to significant 
improvements in performance. Each attention mechanism 
contributes to the overall segmentation accuracy: channel 
attention emphasizes important feature channels, spatial 
attention focuses on key regions and pixel attention targets the 
most relevant pixels, resulting in a more accurate and detailed 
segmentation. The improvements in feature representation and 
segmentation performance have been thoroughly validated 
through rigorous assessments using well-established metrics like 
the Dice coefficient and Jaccard similarity index, demonstrating 
the method’s superiority over traditional models. Additionally, 
a comparative analysis of pixel classification metrics across 
different U-Net variations for chest X-ray segmentation shows 
a clear, consistent improvement as attention mechanisms are 
progressively integrated. In conclusion, the proposed CBAM 
combined with the U-Net architecture marks a significant 
advancement in medical image analysis, providing a more 
accurate and reliable tool for clinical applications.

Future research could enhance the proposed CBAM-
integrated U-Net model by exploring multi-scale attention 
mechanisms to capture features at different resolutions, 
improving segmentation for varying lung sizes and pathologies. 
Expanding the model’s training on diverse chest X-ray datasets 
could increase its generalizability across different populations 
and imaging conditions. Additionally, incorporating other 
advanced attention mechanisms, like dynamic or multi-head 
attention, may further refine performance. Integrating temporal 
analysis for dynamic imaging could aid in monitoring disease 
progression over time, while combining multi-modal imaging 
(e.g., CT and MRI) could provide richer diagnostic information. 
Optimizing the model for real-time clinical deployment and 
improving the interpretability of attention mechanisms would 
further support its practical use in clinical settings, helping 
radiologists make more informed decisions and ultimately 
contributing to better patient outcomes.
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