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 A B S T R A C T 
This thesis provides insight into the magnetic phenomenon of Hysteresis. Hysteresis is defined as a retardation effect where 

the magnetization of a magnetic material lags behind the magnetizing force. Here we will explore the hysteresis loop for a silver 
steel ferromagnet and use this to discover its magnetic properties. The method used will be to place a ferromagnet inside a 
solenoid with an alternating voltage which will continually reverse the magnetic field and magnetism direction. The relation 
between these two quantities will be used to produce a hysteresis loop from which magnetic properties can be deduced. The 
results obtained were: saturation magnetization = (8.4±0.5)(105)Am−1; remnant magnetization = (5.9±0.5)(105)Am−1; coercive 
field: (4.3±0.5)(104)Am−1; energy expended per cycle per unit volume of material: (1.55±0.05)(103)Jm−3s−1; energy product: (8.7 
± 3.0)(104)Jm−3.

Introduction

Included in this report are details of the method, graphs, 
results, error analysis, discussions and conclusions of results. 
Other researchers have found a lot in this area. As will be later 
referenced in the report, the values of the magnetic properties 
explored in this report have already been found to much 
more accuracy by other researchers. The work here is related 
to the wider body of research however it does not provide 
any advancement in the field of ferromagnetism. A practical 
application of ferromagnets is that they are used to make hard 
disks and credit cards. This is due to the ferromagnetic property 
of Hysteresis which provides magnetic memory in the material. 
Therefore, memory is not erased which is very important in 
the items stated above. A scientist named Alexander Stoletov 
was one of the first pioneers for electromagnetism. In 1871 
he made the Stoletov curve showing magnetic permeability’s 
of ferromagnets. Since then, the area of science has gradually 
advanced and is now used widely.

Theory
The theory for this experiment is based around magnetic 

dipoles and solenoids. If we have a solenoid of ‘n’ turns and a 
current ‘I’ is passed through it, a magnetic field will be induced 
with a magnitude given in equation (1). Here µ0 = (4π)(10−7)Hm−1 

is the vacuum permeability and ‘l’ is the length of the solenoid.

	 (1)

The direction of this magnetic field is through the solenoid 
from end to end. This is in accordance with the right-hand rule. If 
one was to curl the fingers of their right hand around the solenoid 
so that their fingertips pointed in the direction of current. Their 
thumb would point in the direction of induced magnetic field. 
Therefore, if we send a sinusoidally alternating current through a 
solenoid, the magnetic field will continually change direction by 
180 degrees. A silver steel ferromagnet contains dipoles pointing 
in random directions in the absence of a magnetic field. These 
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dipoles are formed by the orbital directions of electrons. (Figure 
1) shows the magnetic field lines induced when and electron 
orbits. As can be seen, the magnetic field through the center of 
the ring is vertically upwards.

Figure 1: Induced magnetic field ’B’ lines caused by an electon’s 
orbit.

Adjacent electrons that have the same orbital direction have 
a net magnetic field pointing through the center of each orbit 
according to the right-hand rule. This net magnetic field is called 
a dipole. When an external field is applied from a solenoid, the 
electron orbits gradually align meaning the dipoles point in the 
same direction, thus forming a magnet. The act of the external 
field is to provide a torque (or moment) force on the electrons. 
Hence giving rise to the term ‘magnetic dipole moment’. 
Magnetization is defined as the vector field that represents the 
density of permanent or induced magnetic dipole moments in a 
magnetic material. Therefore, when an external magnetic field 
is applied, the magnetization increases. Ferromagnets have an 
interesting property called Hysteresis. When a ferromagnet is 
magnetized, it will not return back to zero magnetization when 
the external field is removed. The field has to be reversed in 
order to decrease magnetization back to zero. Therefore, for 
ferromagnets, some energy must be expended in order to totally 
randomize the dipole’s directions once again after alignment. 
This is due to the fact that energy is required in order to generate 
an applied magnetic field. In the case of this experiment, the 
applied field was generated via a solenoid powered by the mains. 
A vector which takes into account the alignment of the applied 
field ‘H’ and magnetization ‘M’ is given the name: ‘magnetic 
flux density, ‘B”. The equation relating these terms is given in 
equation (2):

B = µ0(H + M)	 (2)

If an alternating magnetic field is applied, a hysteresis loop is 
traced out with a graph of ’M’ against ‘H’. (Figure 2)1. From this 
graph and a graph of ‘B’ against ‘H’ (which is shown below in 
fig (3)), some magnetic properties of the ferromagnetic material 
used can be determined.

Figure 2: Graph of magnetization ‘M’ vs magnetic field inside 
sample ‘H’. The boxes on the RHS show the alignments of the 
dipoles at stages of the loop corresponding to the numbers on the 
graph. The dipoles are aligned the same way at maximum and 
minimum ‘M’ and are randomly arranged on the ‘H’ axis.

START

The values of ‘M’ at points 3 and 6 are equivalent to the 
positive and negative saturation magnetization values. At 
these points, all of the dipole vectors are aligned in either 
the positive or negative direction, therefore these are the 
maximum and minimum possible magnetization values. The 
remnant magnetization is the value of ‘M’ at point 4. This is the 
magnetization that remains after the sample has had maximum 
positive applied field and now is under no applied field. Point 5 is 
equivalent to the coercive field. This is the modulus of the value 
of the magnetic field strength ‘H’ required to return the sample 
back to zero magnetization. From (Figure 3) some magnetic 
properties relating to the energy expended in the sample can be 
obtained.

Figure 3: Magnetic field inside sample ‘H’ vs magnetic flux 
density ‘B’ hysteresis loop. The dotted line indicates the initial 
path (at the start of the first sinusoidal cycle of applied magnetic 
field), the path then circulates anticlockwise around the bold line

As can be seen, the relation between ‘B’ and ‘H’ is not linear, 
instead a loop is made. The total area enclosed within the loop is 
equivalent to the energy expended during one cycle. Therefore, 
the greater the values of saturation magnetization and coercive 
field, the greater the area of the loop, hence the more energy 
expended. Another measure of energy stored in the sample is the 
‘energy product.’ As outlined2, the energy product is equivalent 
to the largest area of a rectangle drawn between the ‘B’ and 
‘H’ axes with one of its corners on the loop. Energy product 
is commonly used for comparisons between different magnetic 
materials. Harder ferromagnets have larger hysteresis loops, 
this is due to the fact that compared with soft ferromagnets, it 
takes more energy to change the dipole alignment. Therefore, 
harder ferromagnets are used for permanent magnets whereas 
soft ferromagnets are used for temporary magnets. A diagram for 
the experiment is shown below in (Figure 4)

Figure 4: Diagram of the components of the experiment.
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A sinusoidal voltage can be supplied from the power 
amplifier via Matlab programming through the AI0 port. This 
alternating voltage can then be measured via the AI1 port and 
then dropped over the solenoid. An alternating current through 
a solenoid produces a magnetic field from Faraday’s law shown 
algebraically below (where ‘V’ is the voltage across the solenoid, 
n is the number of turns around the solenoid, ‘ϕ’ is the magnetic 
flux and ‘t’ is the time from when the voltage was applied):

	 (3)

The magnetic flux ‘ϕ’ here is equal to the magnetic flux 
density ‘B’ multiplied by the cross-sectional area of the coil 
‘A’. Substituting equation (2) for ‘B’ from above, we obtain the 
expression relating voltage to applied field ‘H’ and magnetization 
‘M’:

	 (4)

In this experiment we want to measure the ‘M’ and ‘H’ fields 
separately of our ferromagnet inside our large solenoid. The 
ferromagnetic sample will have both ‘H’ and ‘M’ magnitudes due 
to the fact that it is a magnetic material. The alternating voltage 
causes the dipoles to change direction therefore changing the 
magnetization. Whereas, if we were to use a dummy sample of 
non-magnetic metal with a solenoid around it carrying alternating 
voltage, it would experience the ‘H’ field and not an ‘M’ field. 
This is due to the fact that the alternating magnetic field does not 
alter the directions of dipoles in a non-magnetic material. The 
two samples are shown below (Figure 5):

Figure 5: This shows the ferromagnet and dummy samples on 
the rod which is placed in the large solenoid. The ‘+’ and ‘-‘ 
signs denote positive and negative voltage

The voltage across the ferromagnet sample is as in equation 
(4). Whereas, as there is no magnetization in the dummy sample 
the voltage across it is shown below in equation (5):

	 (5)

If we were to find the net voltage across both the ferromagnet 
and dummy sample we would be left with the following equation 
(6):

	 (6)

Therefore, the magnetization of the ferromagnetic sample 
can be obtained via manipulation of equation (6) to give equation 
(7):

	 	 (7)

In Matlab, the function ‘cumtrapz(x,y)’ computes an 
approximation of the cumulative integral of ‘y’ with spacing 
‘x’. The function ‘trapz(x,y)’ computes the integral of ‘y’ over 
‘x’ increments. These functions can be used to integrate sample 
voltage over specific time spacing’s in order to produce an 

array of magnetization. We are now concerned with finding the 
magnetic field ‘H’ of the ferromagnetic sample. One might think 
this would be equivalent to the magnetic field of the large solenoid 
‘Ha’, however we must take into account the demagnetizing field. 
According to Maxwell’s equations, a condition of the magnetic 
flux density is that it must be continuous at boundaries between 
surfaces. A boundary condition for the demagnetizing field ‘Hd’ 
is that it is discontinuous at surfaces with normal components 
of magnetism (at the ends of the ferromagnet). Therefore, we 
can show the field lines of magnetic flux density, demagnetizing 
field and magnetism below (Figure 6):

Figure 6: This shows the magnetic flux density (external field), 
the demagnetizing field and the magnetization of a ferromagnet

The direction of the demagnetizing field inside the sample is 
such that it opposes the magnetic field which created it. Therefore, 
the total magnetic field of the ferromagnetic sample is the sum 
of the applied and demagnetizing fields. The demagnetizing field 
is proportional to the magnetization; therefore, we can write this 
as a demagnetizing factor ‘N’ multiplied by the magnetization. 
This is expressed in equation (8) (where ‘Ha’ is the applied field 
and ‘H’ is the total field through the sample):

H = Ha − NM	 (8)

The demagnetizing factor is given as a function of the aspect 
ratio which is shown in equation (9). Where ‘AR’ is the aspect 
ratio, ‘l’ is the length of the ferromagnet and ‘d’ is the diameter 
of the ferromagnet5.

		 (9)

Method
First, the apparatus was set up as shown in (Figure 4) with 

the sample placed half way down the large solenoid. The reason 
why the position of half way down was chosen was because this 
was the part of the solenoid where the magnetic field was most 
uniform. As shown in step (1) of the flow diagram in (Figure 7), 
a Matlab session was created and a sampling rate was chosen. I 
opted for a sampling rate of 1000 as this would produce many 
points on my graphs without the programme taking too long 
to run. An array of time was then created and used to output a 
sinusoidal wave in series from the power amplifier to the resistor 
and to the large solenoid. The output wave had a frequency of 
4Hz, a duration of one second and an amplitude of 5V. The 4Hz 
frequency was selected as this was low enough to allow the sample 
to saturate (to get to maximum or minimum magnetization), yet 
high enough so that the sample was only just saturated before 
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the magnetic field and dipoles began to change direction. 
The 5V voltage was chosen as this was the voltage where the 
hysteresis loops were shaped most similarly to that in (Figure 
2). Next, graph (1) from (Figure 8) (the caption explains how 
the graphs are numbered) was plotted of sample voltage against 
time. This produced a sinusoidal wave in the figure window of 
Matlab. After this, I removed the sample from the solenoid and 
ran the program to obtain another graph. What appeared was a 
noisy signal which wasn’t centered on zero volts. Therefore, in 
order to correct this systematic error, the mean of the noise was 
calculated using the ‘mean’ Matlab function. This mean was 
then taken away from the sample voltage array and replotted in 
order to obtain noise centered on zero volts. The sample was 
then placed back into the solenoid half way down. After this, the 
values of ‘n’ and ‘A’ were needed for use with equation (7). The 
number of turns of the ferromagnet was 400. The diameter of the 
cylindrical ferromagnetic sample was found using a micrometer. 
Therefore, the cross-sectional area was then found. Next, the 
function ‘cumtrapz (t,V)’ was used to find the area between 
graph (1) and the ‘t’ axis. This was then used in equation (7) with 
the know values of ‘n’, ‘A’ and ‘µ0’ to find the magnetism array 
for the ferromagnet. This was plotted (in graph (2)) against time. 
As was expected, the ‘M’ against ‘t’ graph produced a minus-
sine wave which was the integral of the minus-cosine graph 
from graph (1). Next, resistor voltage against time and power 
amplifier voltage against time were plotted in graphs (3) and 
(4) to give a greater understanding of how the experiment was 
working. After this, an array of current though the large solenoid 
was found. This was simply found considering Ohm’s law for 
a current in series through a resistor. The value of the resistor 
was noted on the resistor itself. This meant the graph of current 
against time (graph 5) was the factor of the resistor times less in 
vertical magnitude at every point. Now the magnetic flux density 
inside the solenoid was plotted in graph (6). This was done using 
equation (1). A value of ‘n’ was written on the solenoid itself. 
The array of current was used as ‘I’. A larger micrometer was 
used to find the length of the ferromagnet ‘l’ than that used to 
find ‘d’. After this, the magnetic field inside the sample was 
considered. We know from equation (8) that the demagnetizing 
field has to be taken into account in order to find this. The aspect 
ratio was found and this allowed the demagnetizing factor 
to be found using the graph in the lab manual. Therefore, the 
magnetic field array could be computed from equation (8). This 
was then plotted against time in graph (7). Next the magnetic 
flux density of the sample was found using equation (2). Graphs 
(8) and (9) are hysteresis loops of magnetism against magnetic 
field and magnetic flux density against magnetic field. Now we 
are faced with the issue where we have four hysteresis loops 
and we only need one. To overcome this problem, the 80th to 
305th elements of the magnetic field, magnetic flux density and 
magnetism arrays were reassigned to new variables in Matlab as 
these form one hysteresis loop instead of four. As can be seen 
from graphs (8) and (9) the hysteresis loops are not centered on 
the origin. This is an issue as it will produce systematic errors 
in results. Therefore, offsetting is required to recenter these onto 
zero. This was done by taking the average of each of the three 
‘B’, ‘H’ and ‘M’ arrays and taking this away from the arrays 
themselves. The new arrays were then used to make the ‘M’ 
against ‘H’ and ‘B’ against ‘H’ loops of graphs (10) and (11). 
Now we have our desired hysteresis loops. We know from theory 
that the maximum ‘M’ value is the saturation magnetization. The 
value of ‘M’ when H=0 is the remnant magnetization and the 

modulus of the value of ‘H’ when M=0 is the coercive field. 
We can look at our arrays and find the points of these arrays 
corresponding to the places mentioned and let these equal the 
saturation magnetization, remnant magnetization and coercive 
field values. Next, the magnetic flux density array was broken 
down into four parts corresponding to the four quadrants of the 
B vs H loop. The ‘trapz’ function was then used to find the areas 
of the four quadrants of graph (11). We were careful to use the 
transpose of the matrix if the matrix dimensions were not agreed 
in Matlab. These four area values were then added and the 
modulus taken. This value corresponded to the energy expended 
by the ferromagnet per cycle. However, we need to divide this 
value by the volume of the ferromagnet. This volume could be 
calculated (as the cross-sectional area and length were already 
known). Thus, we now have the energy expended per cycle per 
unit volume. The energy product was found by visually looking 
at graph (11) and seeing where the largest box could be drawn in 
the second quadrant. The distances from this point to the origin 
along the horizontal and vertical axis were then found and then 
multiplied. This gave the area of the box which was equivalent 
to the energy product.

 
Figure 7: Flow diagram showing the steps of my computer 

programming

Results
The diameter of the ferromagnet was found using a 

micrometer to be (6.32±0.01)mm where the uncertainty was 
given as the precision of the micrometer. This corresponded to 
a cross-sectional area of (3.14 ± 0.01)(10−5)m2. Here the error 
was found considering error propagation. The equation used is 
shown in equation (10). Here the factor of ‘n’ is 2 because the 
diameter must be squared in order to obtain the area of a circle. 
‘A’ is the cross-sectional area, ‘d’ is the circle diameter and the 
‘∂’ represents the error in the quantity.

)0STOP
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	 (10)

To obtain graph (5) the value of the resistor was required. 
This was written on the resistor itself to a precision of (0.1 Ω) 
therefore this was taken to be the precision. Therefore resistance 
= (1.5±0.1)Ω. The number of turns of the large solenoid was 
2017 as this was written on the solenoid itself. The length of the 
ferromagnet was found with a different micrometer which only 
had a precision of ±0.1mm to be (152.5±0.1)mm. These values 
were used along with the array of current to obtain magnetic 
flux density against time in graph (6). Equation (9) was used 
in conjunction with the diameter and length of the ferromagnet 
along with the following error propagation equation in order to 
obtain an aspect ratio of (24.1±0.04). Here ‘AR’ is the aspect 
ratio, ‘l’ and ‘d’ are the length and diameter of the ferromagnet.

	 (11)

This corresponded to a demagnetizing factor of 
(0.0037±0.0001) according to the precision of the graph supplied 
in the lab manual. This was used to define the array for the 
magnetic field of the ferromagnet plotted in graph (7). The cross-
sectional area and length of the ferromagnet were multiplied 
together to find the volume of the ferromagnet. The value 
obtained was (478 ± 1)(10−8)m3. Here the error was obtained via 
the error propagation equation (11) as this equation is valid for 
both multiplication and division. Except ‘AR’ was replaced with 
volume ‘v’ and ‘d’ replaced with cross-sectional area ‘A’. The 
volume was needed in order to find the energy expended per 
cycle per unit volume. The saturation magnetization was found 
to be (8.4 ± 0.5)(105)Am−1, the remnant magnetization: (5.9±0.5)
(105)Am−1 and the coercive force to be: (4.3±0.5)(104)Am−1, the 
energy expended per cycle per unit volume to be: (1.5±0.2)(103)
Jm−3s−1 and the energy product to be: (8.7±3.0)(104)Jm−3. Here 
the errors were found considering error propagation and the 
standard deviation of repeats (Figure 8).

Figure 8: This figure shows the graphs created from my 
computer program. For referencing graphs in the text, the graph 
number will ascend across the page. Therefore graph (1) is the 
top-left, graph (2) is the top-middle, graph (4) is the 2nd row, 1st 
column etc

Analysis
The position of the ferromagnet down the large solenoid 

provided error. There was no way of knowing whether the 
ferromagnet was located at the center of the solenoid. This was 
important as the center was where the magnetic field was most 
uniform. Therefore, random errors were made as a consequence 
of this. However, this error was negligible in comparison to 
other errors. There was some noise in the data from the sample 
voltage. This was indicated by the fact that the mean of the 
signal had to be computed with the ferromagnet not present 
in the large solenoid in order to correctly offset the data. This 
would therefore have provided a small source of random error 
throughout the experiment. The method used to find the saturation 
magnetization was erroneous. As explained in the method, the 
peak magnetization value for one run through of the experiment 
was taken to be at a certain place in the magnetization array for all 
repeats of the experiment. However, the highest magnetization 
value for a repeat may have occurred elsewhere in the array. This 
would have resulted in a magnetization value being recorded 
which was not the highest. Therefore, the true saturation 
magnetization would have been missed. Similar is the case for 
the remnant magnetization and coercive field measurements. 
Whereby, the correct value may have moved place in the 
array between repeats. Except in these cases, the value closest 
to zero of the magnetization and magnetic field arrays was 
required, rather than the maximum value required for saturation 
magnetization. Due to this source of error, a standard deviation 
value of (±5(104))Am−1 was found. This was far greater than the 
error from propagation of precisions of instruments. This error 
was found on both the saturation magnetization and remnant 
magnetization values. The standard deviation on the coercive 
field was found to be (±5(103))Am−1. The calculation of energy 
product had error associated with it due to the method used. As 
explained in the method, the sizes of the width and height of the 
box were chosen based on visually looking at the graph itself. 
There was therefore a high probability that a larger box could 
have been made corresponding to different sizes of width and 
height. Especially as the lengths of the magnetic flux density and 
magnetic field strength arrays for the single hysteresis loop were 
both 226. Due to the fact that this error had a far greater impact 
on the energy product than the precision of instruments, an error 
of (±3(104)) was found from standard deviation for the energy 
product. As can be seen in graphs (8) and (9), the hysteresis 
loops gradually shift to the right and slightly down with each 
new cycle. Theory suggests the loops should all lie on top of one 
another because the sample should magnetize and demagnetize 
by the same amount in each cycle. The fact that all of the loops 
are almost exactly evenly spaced apart indicates systematic 
error. The reason behind the shift in loop position can be traced 
back to the sample voltage versus time graph (1). The voltage 
oscillates with the same positive amplitude and frequency. But 
the trough of the wave gradually moves down to a lower and 
lower voltage. The reason behind this is not known for sure but 
there are a few possibilities. One of which is that the chemical 
properties of the ferromagnet mean that it is magnetized better in 
one direction than the other. Another possibility is that the coils 
were not uniformly wrapped around the sample, meaning more 
magnetization in one direction than the other. A faulty voltage 
signal from the power amplifier is not a possibility as graph 
(4) (the graph of power amplifier voltage versus time) shows a 
negative sine wave with no anomalies. The micrometers used in 
this experiment seemed to function properly therefore the error 
on these can be assumed to be equivalent to their precision.
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Discussion
The saturation magnetization value6 was (1.28±0.08)(106)

Am−1. The value from this experiment was (8.4±0.5)Am−1. 
The errors do not overlap and the percentage difference of 
34% indicates a fairly poor result. The major limiting factor 
here was the programming method in which the hysteresis 
loop was used to find the saturation magnetization. A better 
method would have been to use the ‘max’ Matlab function to 
find the maximum magnetization value in the array each time 
and use this as the saturation magnetization. The remnant 
magnetization value6 was (1.04 ± 0.008)(106)Am−1. The value 
from this experiment was (5.9 ± 0.5)(105)Am−1. The errors do 
not overlap with the values and the percentage difference of 
43% indicates a reasonably poor experiment. As was the case 
with the saturation magnetization, the key limiting factor here 
was the method of using the programming to obtain the value. 
Here, a better procedure would’ve been to find the modulus of 
the magnetic field array (by squaring and square rooting). Then 
using the ‘min’ function to find the lowest value in the array and 
using the magnetic field value corresponding to this value in the 
array. The coercive field value6 was (5.3 ± 0.1)(104)Am−1. The 
value obtained from this experiment was (4.3 ± 0.5)(104)Am−1. 
Therefore, the errors do not overlap with the values but they 
are relatively close with a percentage difference of only 19%. 
As was the case with the remnant magnetization, the limiting 
factor was the method of programming and the way to improve 
the experiment would be to implement the same programming 
procedure as the one outlined for the remnant magnetization. 
Except the magnetization array should be manipulated instead 
of the magnetic field array. The energy product value6 was (4.3 
± 0.1)(104)Jm−3. The value obtained from experiment was (8.7 ± 
3.0)(104)Jm−3. These values are quite far apart with a percentage 
difference of 102% which should indicate a bad experiment. 
However, the error bars from the experiment nearly overlap the 
referenced value, therefore the experiment is almost scientifically 
viable. The main source of error in this value was in the method 
of finding the largest area of a box in the second quadrant of the 
hysteresis loop. This proved even more erroneous than the error 
in finding the saturation magnetization, remnant magnetization 
and coercive field. This is due to the fact that it was difficult to 
visualize where the largest box could be drawn (on graph (11)). 
A slight adjustment in the width or height of the box resulted in in 
a much larger change in the area of the box. This was due to the 
steep gradient of the hysteresis loop at the point where the box 
was placed in the second quadrant. A better way to compute this 
value would have been to set up a new Matlab array comprising 
of the product of the magnetic flux density and magnetic field. 
Then to find the maximum value of this array and to use this as the 
energy product. The energy expended per cycle per unit volume 
value6 was (2 ± 0.1)(103)Jm−3s−1. The value obtained from this 
experiment was (1.55±0.05)(103)Jm−3s−1. Therefore the errors do 
not overlap but the values are fairly close. This is indicated by 
the percentage difference of 22%. The error obtained has come 
from propagation of values used to obtain the hysteresis loop 
(such as aspect ratio and sample diameter) and the values used 
to obtain the volume of the ferromagnet (such as length and 
diameter). As can be seen the error is very small compared to 
the value itself. This indicates that systematic errors were more 
prevalent in this experiment than random ones. The errors arising 
from precisions of instruments were very small. This was due to 
micrometers having relatively good precision and the sampling 

rate of 1000 resulting in a very smooth hysteresis loop. The main 
source of systematic error is likely to have arisen from the four 
hysteresis loops not overlapping. Although this didn’t produce 
any measurable error (as the hysteresis loops remained the same 
shape) the fact that the loops were not aligned indicates that there 
was possibly something wrong with the ferromagnet sample or 
the way in which the wire was wrapped around it. There are 
no other obvious sources of systematic error. Therefore, on the 
whole, the way in which this experiment could be improved so 
that the answers gained are closer to those referenced6 would be 
to closely examine the ferromagnet sample to see if there is fault 
with it. Then to find a way to resolve this problem and carry out 
an experiment which results in overlapping hysteresis loops and 
better results.

Conclusion
In conclusion, accurate results were very difficult to obtain 

from this experiment. The reason for this was the fact that the 
error analysis brought back the conclusion that the main source 
of error was systematic and could logically only come from the 
ferromagnet itself. However, the experiment could have been 
vastly improved with more thorough programming procedures. 
This would have greatly reduced the errors on all of the results 
except for the energy expended per cycle per unit volume. One 
good point was the shape of the hysteresis loops obtained. 
These were an almost exact replica1 and show that the theory 
was being realized in the experiment. One bad point was the 
misalignment of the hysteresis loops and the unclear nature of 
their presence. The values obtained by other researchers on the 
quantities examined are far more precise than those found in this 
experiment. Therefore, the work in this project has not impacted 
the wider physical world.
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Appendix
Below is the Matlab code used in the investigation:

clear, close all daq.reset;

%Creating the session s=daq.createSession(‘ni’);

s.addAnalogOutputChannel(‘Dev1’,0,’Voltage’);

s.addAnalogInputChannel(‘Dev1’,0:2,’Voltage’);

%Setting sample rate s.Rate=1000;

%setting frequency and duration of the signal.

freq=4; duration=1;

%creating and plotting my sinusoidal input time=(0:1/s.Rate:duration-1/s.Rate)’; voltage=5.*sin(2*pi*freq*time); queueOutputData(s,voltage);

[data,timestamps]=startForeground(s); figure(1) subplot(4,3,1)

%Accounting for the offset of the data offset=mean(data(:,1)); correctedv=(data(:,1))-offset; plot(time,correctedv,’r-’) xlabel(‘time/s’); 
ylabel(‘ferromagnetic sample voltage/V’)

%integrating voltage to find magnetisation integral=cumtrapz(timestamps,correctedv’); m=(6.34e7).*integral; subplot(4,3,2) plot(timestamps,m,’r-’) 
xlabel(‘time/s’); ylabel(‘M/(A/m)’)

%Plotting resistor voltage against time subplot(4,3,3) plot(time,data(:,2),’r-’) xlabel(‘time/s’); ylabel(‘Resistor Voltage/V’)

%Plotting power amplifier voltage against time subplot(4,3,4) plot(time,data(:,3),’r-’) xlabel(‘time/s’); ylabel(‘Power amplifier voltage/V’)

%Plotting current against time current=(data(:,2))./1.5; subplot(4,3,5) plot(time,current) xlabel(‘time/s’); ylabel(‘current/A’)

%Plotting magnetic flux density against time mu0=4.*pi.*(10.ˆ-7); n=2017; l=0.553; b=(mu0.*n.*current)./l; subplot(4,3,6) plot(time,b) 
xlabel(‘time/s’); ylabel(‘magnetic flux density(B)/T’)

%Plotting magnetic field strength against time H=(b./mu0)-(0.0037*m’); subplot(4,3,7) plot(time,H) xlabel(‘time/s’) ylabel(‘H/(A/m)’)

%Plotting M vs H hysteresis loops subplot(4,3,8) plot(H,m) xlabel(‘H/(A/m)’) ylabel(‘M/(A/m)’)

%Plotting B vs H hysteresis loops subplot(4,3,9) b in=mu0.*(H+m’); plot(H,b in) xlabel(‘H/(A/m)’) ylabel(‘B/T’)

%Getting arrays for one of the loops loop4m=m(80:305); loop4H=H(80:305); loop4bin=b in(80:305);

%setting offsets for H,m and B avloop4H=((max(loop4H))+min(loop4H))./2; avloop4m=((max(loop4m))+min(loop4m))./2; avloop4bin=((max(l
oop4bin))+min(loop4bin))./2;

%reassigning values to centre them on the origin betloop4H=loop4H-avloop4H; betloop4m=loop4m-avloop4m; betloop4bin=loop4bin-avloop4bin;

%Plotting one hystersis loop of M vs H subplot(4,3,10) plot(betloop4H,betloop4m) xlabel(‘H/(A/m)’) ylabel(‘M/(A/m)’)

%Plotting one hystersis loop of B vs H subplot(4,3,11) plot(betloop4H,betloop4bin) xlabel(‘H/(A/m)’) ylabel(‘B/T’)

%calculating saturation magnetisation satmagpos=max(betloop4m) satmagneg=min(betloop4m); %calculating remanant magnetisation 
remmag=betloop4m(153)

%calculating coercive field coefie=betloop4H(181)

%calculating energy expended per cycle per unit volume area1=(trapz(betloop4H(1:57)’,betloop4bin(1:57)’)); area2=(trapz(betloop4H(58:116)’,
betloop4bin(58:116)’)); area3=(trapz(betloop4H(117:181)’,betloop4bin(117:181)’)); area4=(trapz(betloop4H(182:226)’,betloop4bin(182:226)’)); 
area=-(area1+area2+area3+area4)

%calculating energy product bh=betloop4H(153:181).*betloop4bin(153:181); enprod=sqrt((min(bh)).ˆ2)

clear, close all daq.reset;

%Creating the session s=daq.createSession(‘ni’);

s.addAnalogOutputChannel(‘Dev1’,0,’Voltage’);

s.addAnalogInputChannel(‘Dev1’,0:2,’Voltage’);

%Setting sample rate s.Rate=1000;

%setting frequency and duration of the signal.

freq=4; duration=1;

%creating and plotting my sinusoidal input time=(0:1/s.Rate:duration-1/s.Rate)’; voltage=5.*sin(2*pi*freq*time); queueOutputData(s,voltage);

[data,timestamps]=startForeground(s); figure(1) subplot(4,3,1)

%Accounting for the offset of the data offset=mean(data(:,1)); correctedv=(data(:,1))-offset; plot(time,correctedv,’r-’) xlabel(‘time/s’); 
ylabel(‘ferromagnetic sample voltage/V’)

%integrating voltage to find magnetisation integral=cumtrapz(timestamps,correctedv’); m=(6.34e7).*integral; subplot(4,3,2) plot(timestamps,m,’r-’) 
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xlabel(‘time/s’); ylabel(‘M/(A/m)’)

%Plotting resistor voltage against time subplot(4,3,3) plot(time,data(:,2),’r-’) xlabel(‘time/s’); ylabel(‘Resistor Voltage/V’)

%Plotting power amplifier voltage against time subplot(4,3,4) plot(time,data(:,3),’r-’) xlabel(‘time/s’); ylabel(‘Power amplifier voltage/V’)

%Plotting current against time current=(data(:,2))./1.5; subplot(4,3,5) plot(time,current) xlabel(‘time/s’); ylabel(‘current/A’)

%Plotting magnetic flux density against time mu0=4.*pi.*(10.ˆ-7); n=2017; l=0.553; b=(mu0.*n.*current)./l; subplot(4,3,6) plot(time,b) 
xlabel(‘time/s’); ylabel(‘magnetic flux density(B)/T’)

%Plotting magnetic field strength against time H=(b./mu0)-(0.0037*m’); subplot(4,3,7) plot(time,H) xlabel(‘time/s’) ylabel(‘H/(A/m)’)

%Plotting M vs H hysteresis loops subplot(4,3,8) plot(H,m) xlabel(‘H/(A/m)’) ylabel(‘M/(A/m)’)

%Plotting B vs H hysteresis loops subplot(4,3,9) b in=mu0.*(H+m’); plot(H,b in) xlabel(‘H/(A/m)’) ylabel(‘B/T’)

%Getting arrays for one of the loops loop4m=m(80:305); loop4H=H(80:305); loop4bin=b in(80:305);

%setting offsets for H,m and B avloop4H=((max(loop4H))+min(loop4H))./2; avloop4m=((max(loop4m))+min(loop4m))./2; avloop4bin=((max(l
oop4bin))+min(loop4bin))./2;

%reassigning values to centre them on the origin betloop4H=loop4H-avloop4H; betloop4m=loop4m-avloop4m; betloop4bin=loop4bin-avloop4bin;

%Plotting one hystersis loop of M vs H subplot(4,3,10) plot(betloop4H,betloop4m) xlabel(‘H/(A/m)’) ylabel(‘M/(A/m)’)

%Plotting one hystersis loop of B vs H subplot(4,3,11) plot(betloop4H,betloop4bin) xlabel(‘H/(A/m)’) ylabel(‘B/T’)

%calculating saturation magnetisation satmagpos=max(betloop4m) satmagneg=min(betloop4m); %calculating remanant magnetisation 
remmag=betloop4m(153)

%calculating coercive field coefie=betloop4H(181)

%calculating energy expended per cycle per unit volume area1=(trapz(betloop4H(1:57)’,betloop4bin(1:57)’)); area2=(trapz(betloop4H(58:116)’,
betloop4bin(58:116)’)); area3=(trapz(betloop4H(117:181)’,betloop4bin(117:181)’)); area4=(trapz(betloop4H(182:226)’,betloop4bin(182:226)’)); 
area=-(area1+area2+area3+area4)

%calculating energy product bh=betloop4H(153:181).*betloop4bin(153:181); enprod=sqrt((min(bh)).ˆ2)
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