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 A B S T R A C T 
Human Motion Prediction is developed to project human motion in the future frames. With lots of papers tend to predict 

the future motion via Recurrent Neural Network, Multi-Layer Perceptron, or Graph Convolution Network, many complicated 
motions have been predicted more accurately. However, most existing methods have met drawbacks in long-term predictions. 
To make the long-term prediction better, we propose a network called DAFCN, using Fast Fourier Convolution to optimize the 
result on long-term human motion prediction. Our approach also makes advantages of the Motion Attention Model to abstract 
the short-term useful information. Furthermore, our approach attempts to make prediction in short-term and long-term paths, 
which will be mixed in the output layers. Currently, our approach is experimented on Human3.6M, which demonstrate a better 
result on prediction. The code is available at: https://github.com/Kiramei/DAFCN".

Keywords: Deep Learning; Human Motion Prediction; Pattern Recognition; Fourier Analysis; Graph Convolution Network; 
Attention Mechanism

Introduction
In recent years, the field of human motion prediction 

has garnered significant attention due to its wide range 
of applications, including motion detection, human-robot 
interaction1, and motion tracking2. Deep learning techniques, 
particularly those employed in the domain of Computer Vision, 
have been extensively applied in this area of research.

The prediction of human motion based on skeleton data 
presents a complex challenge that can be deconstructed 
into several integral components. The spatial information is 
encapsulated within skeleton points, which encode the three-
dimensional axis information of the human body. Concurrently, 
the temporal dynamics of the motion are captured through 
motion sequences, which provide a descriptive representation 

of the movement. Notably, conventional methods utilizing Long 
Short-Term Memory (LSTM) and Recurrent Neural Networks 
(RNNs)3 have demonstrated considerable success in temporal 
prediction tasks. Building upon these foundations, researchers 
have recognized the potential of Graph Convolutional Networks 
(GCN) in human motion prediction4, as GCN facilitates 
effective connectivity between corresponding skeleton points. 
Consequently, a multitude of GCN variants have emerged, 
offering improved capabilities in abstracting temporal and spatial 
features. Additionally, researchers have explored the prediction 
of human motion in the frequency domain, leveraging methods 
based on Discrete Cosine Transform (DCT)4 to transform 
temporal information into frequency-based representations. 
Furthermore, the utilization of attention models5, renowned for 
their ability to discern salient information through a key-value-
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query mechanism, has provided notable advancements in the 
field of human motion prediction.

Despite these notable advancements, existing approaches 
have not fully explored the potential of GCN in the frequency 
domain, nor have they considered the modification of the merging 
layer to address potential limitations in feature concatenation 
and concentration. Achieving a delicate balance in the extraction 
of temporal and spatial information is of paramount importance 
for both long-term and short-term motion prediction tasks.

To address these challenges, we propose a novel model called 
DAFCN, which exhibits enhanced performance in both long-
term and short-term motion prediction. Extensive evaluations 
conducted on the widely used Human3.6M6 dataset have 
demonstrated its superior predictive capabilities, characterized 
by reduced prediction errors and improved accuracy in capturing 
the intricate dynamics of human motion. The DAFCN model 
embodies a comprehensive understanding of the interplay 
between temporal and spatial information, providing a promising 
avenue for advancing the field of human motion prediction.

Related Work 
Recurrent neural network

RNNs have demonstrated remarkable success in sequence-to-
sequence prediction tasks, thus finding widespread application 
in the domain of human motion prediction. For instance, 
Fragkiadaki, et al.7 proposed the Encoder-Recurrent-Decoder 
(ERD) model, which incorporates a non-linear multi-layer feed-
forward network for encoding and decoding motion before 
and after the recurrent layers. To mitigate error accumulation, 
curriculum learning was employed during training. In a 
similar vein, Jain, et al.8 introduced the Structural RNN model, 
which relies on a manually-designed spatio-temporal graph 
to encode motion history. However, the fixed structure of this 
graph limits the model’s flexibility in capturing long-range 
spatial relationships between different limbs. To enhance 
motion estimation, Toshev, et al.9 presented a residual-based 
model that predicts velocities instead of poses. Interestingly, 
it was observed that a simple zero-velocity baseline, involving 
constantly predicting the last observed pose, outperformed 
prior approaches. While this yielded improved performance 
compared to previous pose-based methods, the predictions 
generated by the RNN still exhibited discontinuities between 
observed and predicted poses. To address this issue, Ruiz, et 
al.10 treated human motion prediction as a tensor inpainting 
problem and utilized a generative adversarial network for long-
term prediction. However, the use of an adversarial classifier 
complicates training, posing challenges for its deployment on 
new datasets.

The development of deep neural networks has ushered in 
exciting advancements in motion prediction. Several studies 
have employed RNNs to model the temporal correlations of 
human motion. However, these frame-by-frame methods exhibit 
limitations in long-term motion prediction due to the inherent 
problem of error accumulation, while RNN-based networks 
suffer from first-frame discontinuity. In response, researchers 
have endeavored to improve prediction results by employing 
sequence-to-sequence residual models, generative adversarial 
learning, and imitation learning. In contrast to the frame-by-frame 
framework, sequence-to-sequence methods effectively mitigate 
cumulative errors in long-term prediction. Notably, convolution-

based approaches treat the historical sequence as a whole and 
extract motion features in spatial or temporal dimensions, while 
attention-based mechanisms utilize attention models to capture 
joint-to-joint and frame-to-frame dependencies.

Graph convolution network

Graph Convolutional Networks are a type of deep learning 
model specifically designed for graph-structured data. They 
extend traditional convolutional neural networks (CNNs) to 
handle irregular and non-Euclidean data domains, such as social 
networks, molecular structures, and recommendation systems.

The key idea behind GCNs is to generalize the convolution 
operation from regular grids (e.g., images) to graph structures. 
GCNs leverage the neighborhood information of each node in 
the graph to perform node feature aggregation and extraction. By 
iteratively aggregating features from neighboring nodes, GCNs 
can capture local and global structural patterns in the graph.

Kipf and Welling1 proposed a scalable and efficient GCN 
model for semi-supervised learning on graph-structured data. 
Their GCN formulation is based on the concept of graph 
Laplacian, which represents the smoothness of signals on a 
graph. The model applies a localized first-order approximation 
of the spectral graph convolution operation, which enables 
efficient training and inference. The authors demonstrated the 
effectiveness of GCNs on various benchmark datasets for node 
classification tasks.

Since its introduction, GCN has become a popular research 
topic in the field of graph representation learning and has 
inspired numerous extensions and applications. Several variants 
of GCNs have been proposed to address different challenges, 
such as graph pooling, handling directed or attributed graphs, 
and incorporating temporal dynamics.

Discrete cosine transforms

The Discrete Cosine Transform (DCT) is a mathematical 
technique used to convert a signal or data sequence from the 
time or spatial domain into the frequency domain. It is widely 
employed in signal processing, particularly in image and video 
compression.

The DCT operates by representing a signal as a linear 
combination of cosine functions with different frequencies. 
Through this transformation, the DCT extracts the frequency 
components present in the signal. The resulting DCT coefficients 
represent the signal’s energy distribution across different 
frequencies.

In the context of image and video compression, the DCT 
is applied to blocks of pixel values. By dividing an image or 
video frame into smaller blocks and applying the DCT to each 
block, the temporal information within the blocks is transformed 
into frequency components. The DCT coefficients capture the 
relative importance of different frequencies in each block.

The energy compaction property of the DCT allows for 
efficient representation of the signal by concentrating most 
of the signal’s energy in a small number of significant DCT 
coefficients11. This property makes the DCT well-suited for 
compression purposes, as the less significant coefficients can 
be quantized or discarded without significant loss in perceptual 
quality.
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Attention

Attention is a mechanism widely used in deep learning 
models to selectively focus on specific parts of an input 
sequence, allowing for enhanced information processing and 
abstraction. It has been successfully applied in various fields, 
including natural language processing, computer vision, and 
human motion prediction.

At its core, attention involves assigning importance weights 
or scores to different elements within an input sequence based 
on their relevance or significance to the current context. These 
elements can be individual tokens in a sentence, pixels in an 
image, or joints in a motion sequence. The attention mechanism 
allows the model to dynamically calculate these weights and use 
them to selectively attend to the most relevant elements.

Attention mechanisms have proven to be valuable in the 
field of human motion prediction, enabling models to effectively 
capture relevant temporal dependencies and abstract valuable 
information from complex motion sequences. By incorporating 
attention into human motion prediction models, these models 
can selectively focus on crucial joints or frames, enhancing their 
ability to predict future human movements accurately12.

In human motion prediction, attention mechanisms are 
typically employed to model the dependencies between different 
joints or frames within a motion sequence. By assigning 
attention weights to each joint or frame based on its relevance 
to the prediction task, attention mechanisms enable the model 
to emphasize the most informative elements while downplaying 
the less relevant ones.

The mechanism works by calculating attention weights 
that reflect the importance of each joint or frame in the context 
of predicting future motion. These weights are then used to 
aggregate the information from different joints or frames, 
allowing the model to attend to the most salient parts of the 
motion sequence for accurate prediction.

Fast Fourier convolution

Deep neural networks have driven significant advancements 
in various research domains, including human motion prediction. 
Shchekotov I et al.13 presents a novel convolutional unit, named 
fast Fourier convolution (FFC), specifically designed to enhance 
human motion prediction in deep neural networks. The FFC 
unit addresses two critical requirements: the utilization of large 
receptive fields and the fusion of multi-scale information.

Receptive fields play a crucial role in capturing spatial 
dependencies within motion sequences. While many networks 
employ stacked convolutions with small receptive fields, context-
sensitive tasks like human pose estimation benefit from larger 
receptive fields. To efficiently implement non-local receptive 
fields and fuse multi-scale information, the paper leverages the 
spectral transform theory, employing the Fourier transform as 
the basis for FFC14.

The FFC unit consists of operations with varying receptive 
fields, including non-local operations achieved through Fourier 
transform. These operations are applied to disjoint subsets of 
feature channels, and the resulting feature maps are aggregated 
to generate the final output. Importantly, FFC can seamlessly 
replace vanilla convolutions in existing mainstream CNN 
architectures without additional computational burden.

Experimental evaluations on human motion prediction tasks, 
such as action recognition and human key point detection, 
demonstrate the superior performance of FFC compared to 
previous models. FFC achieves enhanced prediction accuracy 
while maintaining computational efficiency comparable to 
vanilla convolutions. The results highlight the potential of FFC 
to significantly advance the field of human motion prediction 
by incorporating non-local receptive fields into deep neural 
networks.

Method

Figure 1: The whole structure of DAFCN: Proposed model contains 
two main feature extractors for grab the motion features, which are 
the Local Motion Feature Extractor (LMFE) and the Global Motion 
Feature Extractor (GMFE), where in the method description, part of 
the former one is denoted as Attention model and part of the latter 
one is denoted as FFC. LMFE adopts the attention mechanism for 
temporal feature extraction and GCN for spatial feature extraction, 
while DCT enhanced the perception of the model in the frequency 
field. On the other hand, GMFE decomposed the input motion 
into local part and global part, where the core lies in the usage 
of Spectral Transform, which let FFC takes effect to obtain more 
motion feature in the frequency field. Finally, our method adopts a 
simple MLP layer for motion output, which is demonstrated as Final 
Motion Mixer.

Building upon previous research, our objective is to enhance 
the integration of short-term and long-term prediction. To 
achieve this, we have devised a method that involves dividing 
the source into two distinct parts, which is portraited in (Figure 
1). The first part utilizes an Attention model to extract valuable 
information from the preceding human motion sequence. 
Conversely, the second part employs a FFC approach to capture 
global and indistinct information.

In our approach, we incorporate window convolution, where 
the given sequence length is denoted as N, and the length of the 
sequence to be predicted is represented as T. we set the window 
size as , resulting in the acquisition of , 
windows for prediction purposes.

To enhance the predictive capabilities of our method, we 
integrate the DCT. By transforming the axis information into the 
frequency domain, the GCN becomes more adept at abstracting 
the bone structure graph, thereby yielding improved prediction 
outcomes.

Furthermore, we emphasize the significance of FFC as a 
robust long-term informer. Previous studies have highlighted 
the cross-multiplication mechanism inherent in FFC, which 
leverages Fourier transform on a single channel. This novel 
approach enables the extraction of global information that 
contributes to enhanced prediction accuracy.

Once all the individual components are completed, they are 
concatenated and fed into a MLP layer. Employing an MLP 
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layer for data fusion proves to be an excellent choice, given its 
remarkable ability to integrate diverse data sources effectively.

In summary, our proposed methodology combines an 
Attention model for short-term information extraction, FFC 
for long-term information capture, window convolution for 
prediction across multiple windows, DCT for transforming axis 
information into the frequency domain, GCN for abstracting 
bone structure graphs, and an MLP layer for comprehensive 
data mixing. By integrating these components, our approach 
aims to improve the accuracy and robustness of human motion 
prediction.

Experiment
Human3.6M is used as our training and testing dataset, 

which is a widely used benchmark dataset for motion prediction. 
It consists of recordings of seven actors performing 15 actions, 
with each human pose represented as a 32-joint skeleton. The 3D 
coordinates of the joints are computed using forward kinematics 
on a standard skeleton.

To align with previous works, we remove the global rotation, 
translation, constant angles, and 3D coordinates of each human 
pose. The motion sequences are down-sampled to 25 frames 
per second. Our method is evaluated on subject 5 (S5) from the 
Human 3.6M dataset. Instead of testing on a limited number of 
random sub-sequences per action, as shown to introduce high 
variance, we report results on 256 sub-sequences per action 
when using 3D coordinates.

Let us now introduce the loss functions we use to train our 
model on either 3D coordinates or joint angles. For 3D joint 
coordinates prediction, we make use of the Mean Per Joint 
Position Error (MPJPE) proposed in Ionescu C et al. ’s work15. 
In particular, for one training sample, this yields the loss

where  represents the 3D coordinates of the jth 
joint of the tth human pose in , and  is the 
corresponding ground truth16.

 

   (Table 1).

Table 1: MPJPE Comparison of Prediction Result on H3.6M.
Model 80ms 160ms 320ms 400ms 560ms 720ms 880ms 1000ms

conv 
Seq2Seq 13.5 27 52 63.1 82.4 98.8 112.4 120.7

HRI 10.4 22.6 47.1 58.3 73 91.8 101.1 112

DAFCN 9.7 22.1 46.8 57.9 77.3 91.5 103.6 111.3

In accordance with the configuration used in our reference 
baselines, which are convSeq2Seq and HRI, we present our 
results in Table 1 for both short-term prediction (less than 
500ms) and long-term prediction (greater than 500ms). For 
the Human3.6M dataset, our model is trained by utilizing the 
previous 50 frames to forecast the subsequent 10 frames. To 
generate poses further into the future, we recursively employ the 
predicted poses as input to the model.

Based on the results presented in Table I, it is evident that 
our model consistently achieves superior performance compared 
to the two aforementioned models in both short-term and long-
term prediction tasks. The results clearly demonstrate the 
effectiveness and superiority of our model over the competing 
approaches.

Conclusion
In this paper, we propose an approach called DAFCN for 

human motion prediction addresses the limitations of existing 
methods in long-term predictions by utilizing Fast Fourier 
Convolution and incorporating the Motion Attention Model to 
capture short-term relevant information. The hybrid prediction 
strategy, which combines short-term and long-term paths in 
the output layers, further enhances performance. Experimental 
evaluations on the Human3.6M dataset demonstrate the 
superiority of our model in both short-term and long-term 
prediction tasks, offering valuable insights for advancing the 
field of human motion prediction and enabling more accurate 
predictions in real-world scenarios.
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