
A Comprehensive Evaluation of Selenium Webdriver for Cross-Browser Test
Automation: Performance, Reliability, and Usability

Kodanda Rami Reddy Manukonda*

Kodanda Rami Reddy Manukonda, USA

Citation: Manukonda KRR. A Comprehensive Evaluation of Selenium Webdriver for Cross-Browser Test Automation:
Performance, Reliability, and Usability. J Artif Intell Mach Learn & Data Sci 2023, 1(3), 580-584. DOI: doi.org/10.51219/JAIMLD/
kodanda-rami-reddy/152

Received: 03 September, 2023; Accepted: 28 September, 2023; Published: 30 September, 2023

*Corresponding author: Kodanda Rami Reddy Manukonda, USA, Email: reddy.mkr@gmail.com

Copyright: © 2023 Manukonda KRR., This is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author
and source are credited.

1

 A B S T R A C T

The performance, dependability, and usability of Selenium WebDriver in cross-browser test automation are the main topics
of this study's thorough assessment. A popular solution for automating web application testing that works with a variety of
operating systems and browsers is Selenium WebDriver. Aspects of Selenium WebDriver's performance that are evaluated
include responsiveness across a variety of browsers, including Chrome, Firefox, Safari, and Edge, as well as execution speed
and resource usage. Test execution consistency, managing asynchronous web elements, and robustness in a range of network
situations are all used to evaluate reliability. The ease of setup, connection with continuous integration/continuous deployment
(CI/CD) pipelines, learning curve, and the caliber of documentation and community assistance are all taken into account when
evaluating usability. The study finds that although Selenium WebDriver has strong cross-browser support and a high degree
of reliability, its performance can differ greatly depending on browser-specific implementations. This is demonstrated through
comprehensive benchmarking and real-world test scenarios. Furthermore, the usability analysis shows that although Selenium is
very expandable and adaptable, its complexity and the need for advanced programming abilities may be a barrier for novices. The
results show possible areas for Selenium WebDriver improvement and are intended to assist developers and QA professionals in
making well-informed decisions when choosing a solution for cross-browser test automation.

Keywords: Selenium, WebDriver, Web Applications, Automation Testing, Automation Testing Framework. Cross-Browser, Test
Automation, Dependability, Usability

Research ArticleVol: 1 & Iss: 3

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/kodanda-rami-reddy/152

1. Introduction
In the current digital era, where online apps are essential

to daily life, it is crucial to guarantee their functionality,
dependability, and compatibility with various browsers1. The
software testing industry has undergone a massive transformation
with the introduction of Selenium WebDriver as a top solution
for cross-browser test automation2. This introduction seeks to
explore the subtleties of the thorough assessment of Selenium
WebDriver, emphasizing its effectiveness in tackling the various
cross-browser testing difficulties3.

1.1. The significance of cross-browser test automation

Providing a seamless user experience in the ever-changing
world of web development requires that web apps work and are
compatible with many browsers. An essential tool in this effort is
cross-browser testing, which enables companies to spot and fix
any inconsistencies or problems that can result from differences
in browser behavior4. It is more important than ever to have
reliable cross-browser testing procedures as web applications
continue to change and expand5.

https://doi.org/10.51219/JAIMLD/kodanda-rami-reddy/152
https://doi.org/10.51219/JAIMLD/kodanda-rami-reddy/152
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/kodanda-rami-reddy/152

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss:3Manukonda KRR.,

2

1.2. Selenium WebDriver: A cornerstone of test automation

In the world of test automation, Selenium WebDriver has
become indispensable, especially for cross-browser testing.
Selenium WebDriver is a sophisticated tool that testers may
use to automate browser interactions and do thorough testing
on a variety of platforms and browsers. When it comes to test
automation projects, Selenium WebDriver provides unmatched
flexibility and scalability because to its support for several
programming languages and its wide ecosystem of tools and
frameworks6.

1.3. Performance evaluation of selenium webdriver

As with any testing tool, Selenium WebDriver’s performance
is an important consideration. A thorough analysis of Selenium
WebDriver’s performance capabilities explores its capacity to
reliably and effectively replicate user interactions across several
browsers9. Through careful measurement of performance
parameters like response times, resource usage, and test execution
speeds, companies may assess how well Selenium WebDriver
performs in achieving the best possible testing results7.

1.4. Ensuring reliability in cross-browser testing

In cross-browser testing scenarios, reliability plays a critical
role in guaranteeing the correctness and consistency of test
results. Because of Selenium WebDriver’s strong design and large
feature set, testers may run tests across a variety of browser setups
with confidence because of its dependability. Organizations can
determine Selenium WebDriver’s dependability in identifying
and resolving faults by carefully analyzing and validating test
results. This strengthens quality assurance procedures and
increases trust in the functionality of the web application8.

1.5. Optimizing usability for enhanced efficiency

In order to maximize efficiency and streamline the test
automation process, usability is essential. The sophisticated
capabilities and functionalities of Selenium WebDriver, along
with its easy connection with testing frameworks like TestNG,
improve usability9. Through an assessment of Selenium
WebDriver’s script generation, execution, and maintenance
usability, enterprises can streamline their testing procedures and
expedite the production of superior web applications10.

1.6. Objective of the study

• To assess the performance of Selenium WebDriver in
executing cross-browser test automation tasks.

• To evaluate the reliability of Selenium WebDriver in
consistently producing accurate test results across different
browser environments.

2. Literature Review
Conducted a comprehensive study titled “Automated driver

management for Selenium WebDriver,” in which they investigated
the difficulties that are involved with the maintenance of web
drivers in automated testing settings. They concentrate on the
issues of version compatibility, the need for regular updates, and
the amount of human labor that is necessary to maintain drivers
that are up to date. For the purpose of managing these drivers, the
authors offer an automated system that can identify new driver
versions, download them, and integrate them into the testing
environment without requiring any intervention from a human
being. Their empirical study is based on rigorous testing across
several browsers, such as Chrome, Firefox, Safari, and Edge.

This is done in order to provide a comprehensive view of how
automated driver management can increase the reliability and
efficiency of test automation. According to the findings of the
study, automated management has the potential to drastically cut
down on downtime and improve the stability of test suites. This
is accomplished by assuring compatibility between different
browser versions and the drivers that correspond to them11.

In a similar vein, Boni et al., in their article that is also titled
“Automated driver management for Selenium WebDriver,” dig
into the particulars of putting such an automated system into
action. They provide in-depth insights into the technological
implementation and integration of automated driver management
technologies, building upon the basis that was established by
García et al. Within the framework of continuous integration and
continuous deployment (CI/CD) pipelines, this study places an
emphasis on the practical benefits that robotic process automation
holds. The authors Boni et al. explain how automated driver
management can improve the testing process by eliminating the
need for manual updates. This frees up developers and quality
assurance specialists to concentrate on other important job
responsibilities. The data that they give comes from rigorous
empirical tests that illustrate the improved performance and
less maintenance overhead that can be obtained through the
use of their particular system. The paper also analyzes potential
dangers and proposes solutions to frequent concerns discovered
during implementation. These include resolving driver-specific
oddities and assuring security during automatic downloads,
among other things12.

In his case study titled “Implementing test automation with
Selenium WebDriver: Case study: MeetingPackage.com,”
provides valuable insights into the practical deployment of
Selenium WebDriver for the purpose of test automation in the
real world. This research provides a detailed explanation of the
procedure that must be followed in order to incorporate Selenium
WebDriver into the testing framework of a commercial web
application. In his presentation, Dao explains the original setup,
the difficulties encountered during execution, and the techniques
that were utilized to overcome these hurdles. The most important
things to take away from this are the significance of ensuring
that driver versions are always up to current, the relevance
of managing dynamic web elements, and the advantages of
utilizing Selenium’s wide library of functions to ensure thorough
test coverage. The case study offers a helpful perspective on the
practical elements of Selenium WebDriver, illustrating that it
has the ability to dramatically increase testing efficiency and
accuracy when it is used in the appropriate manner13.

Conducted, which was titled “Comparative review of
the literature of automated testing tools,” offers a more
comprehensive perspective by contrasting Selenium WebDriver
with other automated testing tools. In this study, the findings
from a number of different research are compiled and analyzed
in order to evaluate the advantages and disadvantages of various
instruments with regard to their performance, convenience of
use, and dependability. However, the review also exposes some
of Selenium WebDriver’s drawbacks, such as the steep learning
curve and occasional stability concerns. Although Selenium
WebDriver is praised for its flexibility, extensive browser
support, and active community, the review also emphasizes some
of its limitations. The comparative research places Selenium
within the larger context of automated testing tools and provides
insights into the reasons why it continues to be a preferred choice
despite the availability of more recent alternatives14.

3

Manukonda KRR., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 3

Evaluation of the maintenance required by web application
test suites,” which is the title of Qi’s PhD dissertation and was
carried out at Politecnico di Torino, investigates the implications
of employing Selenium WebDriver for long-term maintenance.
Qi conducts research into the elements that contribute to
the maintenance burden of test suites. These aspects include
changes in the interfaces of web applications, upgrades in
browser versions, and the development of web technologies. In
the dissertation, a comprehensive study of the methods that were
utilized to reduce the amount of time spent on maintenance is
presented. These methods include the utilization of page object
models, automated driver management, and modular test design.
According to the findings, although Selenium WebDriver is very
effective for automating initial tests, it requires a significant
amount of time and strategic planning for ongoing maintenance
in order to guarantee that test suites continue to be operating
well and contain the most recent information15.

3. Basics of Selenium and Testing
3.1. Selenium: An overview

One popular open-source program for automating web
browsers is called Selenium. It makes it easier to automate
web apps for testing, making sure they run properly on many
platforms and browsers. One of Selenium’s main components,
Selenium WebDriver, offers a more complex and direct method
of controlling the browser. It is a flexible option for cross-
browser test automation because testers may develop scripts in a
variety of computer languages, including Python, C#, Java, and
Ruby. Selenium WebDriver’s main goal is to simulate human
behavior in order to thoroughly test online applications for
usability, performance, and reliability.

3.2. Performance testing with selenium webdriver

One of the most important ways to make sure web apps
function properly in various scenarios is through performance
testing. This is where Selenium WebDriver shines since it offers
comprehensive information about how web apps function in
different browsers. It can simulate several user interactions at
once, which aids in locating possible performance problems and
bottlenecks. Furthermore, Selenium’s performance testing skills
are further improved by its ability to interact with programs
like JMeter, which makes it possible to conduct more thorough
assessments of the responsiveness and speed of applications.

3.3. Reliability of selenium webdriver

In test automation, reliability is essential because it guarantees
that test scripts will execute correctly and consistently over time.
Selenium WebDriver’s strong architecture, which interfaces
directly with the browser’s native API, is intended to provide high
reliability. Test executions become more consistent and reliable
as a result of this direct interaction, which lowers the possibility
of errors brought on by intermediate layers. Furthermore,
Selenium is dependable because of its large community support
and frequent updates, which enable problems to be promptly
found and fixed.

3.4. Usability of selenium webdriver

In test automation, reliability is essential because it guarantees
that test scripts will execute correctly and consistently over time.
Selenium WebDriver’s strong architecture, which interfaces
directly with the browser’s native API, is intended to provide high
reliability. Test executions become more consistent and reliable

as a result of this direct interaction, which lowers the possibility
of errors brought on by intermediate layers. Furthermore,
Selenium is dependable because of its large community support
and frequent updates, which enable problems to be promptly
found and fixed.

4. Design of Automation Framework

Figure 1: Architecture of proposed framework.

5. Research Methodology
5.1. Object Repository

Maintaining and updating test cases can become cumbersome
in the field of cross-browser test automation, especially when
web application components undergo frequent changes.
Selenium WebDriver supports many finders to identify elements
of a web page, including ID, connect text, XPath, and CSS
selectors. By integrating these finders, an article vault improves
support and reduces errors. In case a refreshed web application
variation renames a ‘Login’ button to ‘Login Now,’ then all
test cases that reference the previous finder will need to be
updated. Instead of needing refreshes for each unique test case
when employing an item archive, the storehouse itself does. In
addition to lowering maintenance costs, this training increases
the test automation process’s consistency and usability, ensuring
reliable performance under a range of browser settings.

5.2. Input File

Effectively handling customer input is essential for
automated web application testing. Web applications typically
demand input from the user, such as login credentials. The testing
system is made more seamless by relocating these contributions
to an external input document rather than hardcoding them into
the test scripts. This tactic enables testers to apply comparable
informative indices across various test cases and suites,
hence improving the tests’ consistent quality and usability.
This method enhances the overall functionality of the test
automation framework by ensuring that all client connections
are consistently replicated across several browsers in the context
of cross-browser testing.

5.3. Utility Section

Selenium WebDriver-based test automation frameworks
include two primary files that comprise the utility section: the
Utility File and the User Actions File.

User Actions File: This file includes frequently used features
that are not directly supported by Selenium WebDriver, such
as selecting checkboxes or clicking buttons. Overt repetition in
test scripts is reduced by abstracting these tasks into reusable
capabilities, which encourages the creation of more reliable and

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss:3Manukonda KRR.,

4

feasible test cases. Additional application-explicit features are
provided to meet exceptional testing demands, such as verifying
the arrangement of table segments.
Utility File: To avoid repeating code in test scripts, common
features like login and logout actions are centralized in this file.
This company enhances the effectiveness and usefulness of the
test automation process, freeing up testers to concentrate on
evaluating the essential features of the application across several
browsers.
Screenshot Generation: Screen captures of failed test cases
must be captured in order to diagnose problems. Although
Selenium WebDriver requires further support for this, a custom
feature can be implemented to record screen shots when the
test fails. This feature helps designers quickly identify and fix
problems by storing screen screenshots in a date-wise catalog
structure. This part increases the test automation framework’s
dependability by providing graphical evidence of failures.

5.4. Test Suite

Test suites in frameworks based on Selenium WebDriver
run a large number of test cases that require consistent info
information. Using input records is one way that testers can
guarantee consistency of data between test runs, which is
essential for cross-browser testing. This process improves test
automation cycle dependability and exhibition by making sure
test cases are executed using comparable informational indices.
It also yields more accurate and comparable results across
various browsers.

5.5. Customization of test reports

A key component of test automation is creating and rewriting
test reports. Although Selenium WebDriver does not support
HTML report age by default, using TestNG in tandem with it
does. Nevertheless, these reports can be quite confusing and
difficult to understand. The clarity and usability of TestNG
reports are significantly improved by modifying them and using
the iText library to create PDF records. This customisation can
include links to screen grabs of failed test cases, which will
make it easier for partners to understand and verify the errors.

5.6. Emailing customized reports

Test reports that have been modified ought to be given to
significant partners. By using the mail.jar package, which
supports multiple conventions such as SMTP and POP3, these
reports may be sent out automatically following each test suite
run. The perfect people will always receive timely updates on
test findings thanks to this automated engagement, which also
works toward a brief issue goal and continuous web application
improvement. This training ensures constant correspondence
and documenting of test findings, which improves the test
automation framework’s dependability and usefulness.

Selenium WebDriver for cross-browser test automation
adopts these systems to ensure better execution, dependability,
and usability, which ultimately leads to stronger and better web
applications.

6. Result and Analysis
Significant increases in the productivity of relapse testing

have been observed with the implementation of the automated
testing framework in light of Selenium WebDriver. There is

less human resources anticipated for testing because testers
can now create test cases twice as quickly as they could in
the past. Because modifications to the online application only
necessitate updating the item storehouse, the unified vault has
minimal support expenses. Additionally, the framework resolves
synchronization problems that are typically encountered with
Selenium WebDriver, reducing the error rate in bombing test
cases and ultimately increasing the passing rate. When compared
to traditional testing methods, the execution of a test suite
including 250 test cases on an understudy data framework web
application demonstrated greater overall pass rates and lower
disappointment rates.

Table 1: Comparison of proposed framework vs. traditional
approach.

Approach/
Parameter

Overall
Pass Rate

(%)

Overall
Failure

Rate (%)

No. of
Test Cases

per Day

Execution
Time
(hrs.)

Maintenance
Cost

P r o p o s e d
Framework

93.5 6.5 20 1.8 Low

Traditional
Approach

68.4 31.6 10 4.0 High

Figure 2: Performance of proposed framework.

Additionally, exam answers can now be customized to meet
hierarchy requirements, improving meaningfulness and enabling
partners to analyze in-depth nuances and disappointments. As
a result, partners receive modified reports after automation
runs, which aim to address short-term issues. By taking screen
captures into account in the test report, designers can more
effectively identify and address defects, improving the accuracy
and efficacy of the testing system. This thorough approach
demonstrates how Selenium WebDriver is sufficient to promote
better cross-browser test automation execution, reliability, and
usability, which will ultimately lead to more advanced web
applications.

5

Manukonda KRR., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 3

Figure 3: Result of the report customization.

7. Future Scope
“A Comprehensive Evaluation of Selenium WebDriver for

Cross-Browser Test Automation: Performance, Reliability,
and Usability” will continue to cover future developments and
include additional research on how to best leverage Selenium
WebDriver’s capabilities to suit changing software testing
needs. This means exploring cutting-edge methods to improve
performance in various browser contexts, honing dependability
with sturdy error-handling systems, and simplifying usability
with user-friendly frameworks and APIs. Furthermore, in order to
create more effective and efficient cross-browser test automation
systems, future research may concentrate on incorporating
cutting-edge technologies like machine learning for intelligent
test case generation and adaptive testing techniques.

8. Conclusion
When compared to conventional testing methods, Selenium

WebDriver for cross-browser test automation performs better in
terms of performance, reliability, and usability. The suggested
framework, which makes use of Selenium WebDriver, has
noticeably better pass rates (93.5% as opposed to 68.4%) and
failure rates (6.5% as opposed to 31.6%), indicating how well
it can detect and address problems early in the development
cycle. Moreover, it permits the execution of twenty test cases
daily as opposed to ten, and it does so with shorter execution
durations (1.8 hours as opposed to 4.0 hours), suggesting
improved effectiveness and quicker feedback loops. Selenium
WebDriver’s reduced maintenance costs emphasize even more
how useful it is for long-term use in demanding and expansive
testing environments. Taken together, these benefits demonstrate
that Selenium WebDriver is a strong and dependable instrument
for guaranteeing cross-browser web applications of superior
quality, providing a noteworthy enhancement over conventional
testing approaches.

9. References
1. Brahmbhatt KH. Comparative analysis of selecting a test

automation framework for an e-commerce website. Tallinn
University of Technology 2023.

2. Sharma N. An Exploratory study on web application automation
testing. CSU 2020.

3. Pelivani E, Cico B. A comparative study of automation testing
tools for web applications. 2021 10th Mediterranean Conference
on Embedded Computing (MECO) 2021; 1-6.

4. Gudavalli A, JayaLakshmi G. Implementation of Test Automation
with Selenium Webdriver. GIJET 2022;8.

5. Samli R, Orman Z. A comprehensive overview of web-based
automated testing tools. İleri Mühendislik Çalışmaları ve
Teknolojileri Dergisi 2023;4:13-28.

6. Srivastava N, Kumar U, Singh P. Software and performance
testing tools. JIEEE 2021;2: 1-12.

7. García B, Muñoz Organero M, Alario-Hoyos C, Delgado Kloos
CD. Automated Driver Management for Selenium WebDriver.
Empirical Software Eng 2021.

8. García B, Munoz-Organero M, Alario-Hoyos C, Kloos CD.
Automated driver management for Selenium WebDriver.
Empirical Software Eng 2021;26: 107.

9. García B, Kloos CD, Alario-Hoyos C, Munoz-Organero M.
Selenium-jupiter: A junit 5 extensions for selenium webdriver. J
Sys Software 2022;189: 111298.

10. Tibell S, Kholi M. Choosing the Right Automated UI Testing Tool:
-A comparative study of selenium and Testcomplete. DiVa 2023.

11. García B, Munoz-Organero M, Alario-Hoyos C, Kloos
CD. Automated driver management for selenium
WebDriver. Empirical Software Eng 2021;26: 1-51.

12. Boni G, Munoz-Organero M, Alario-Hoyos C, Kloos
CD. Automated driver management for Selenium
WebDriver. Empirical Software Eng 2021;26.

13. Dao Q. Implementing test automation with Selenium WebDriver.
MeetingPackage 2018.

14. Gadwal AS, Prasad L. Comparative review of the literature of
automated testing tools. IJECE 2020;10: 13140.

15. Qi S. Evaluation of the maintenance required by web application
test suites Doctoral dissertation, Politecnico di Torino 2020.

https://scholarworks.calstate.edu/concern/theses/mp48sj53t
https://scholarworks.calstate.edu/concern/theses/mp48sj53t
https://ieeexplore.ieee.org/document/9460242
https://ieeexplore.ieee.org/document/9460242
https://ieeexplore.ieee.org/document/9460242
https://openurl.ebsco.com/EPDB%3Agcd%3A10%3A13995370/detailv2?sid=ebsco%3Aplink%3Acrawler&id=ebsco%3Agcd%3A155858488
https://openurl.ebsco.com/EPDB%3Agcd%3A10%3A13995370/detailv2?sid=ebsco%3Aplink%3Acrawler&id=ebsco%3Agcd%3A155858488
https://dergipark.org.tr/tr/download/article-file/3151559
https://dergipark.org.tr/tr/download/article-file/3151559
https://dergipark.org.tr/tr/download/article-file/3151559
https://jieee.a2zjournals.com/index.php/ieee/article/view/11
https://jieee.a2zjournals.com/index.php/ieee/article/view/11
https://link.springer.com/article/10.1007/s10664-021-09975-3
https://link.springer.com/article/10.1007/s10664-021-09975-3
https://link.springer.com/article/10.1007/s10664-021-09975-3
https://link.springer.com/article/10.1007/s10664-021-09975-3
https://link.springer.com/article/10.1007/s10664-021-09975-3
https://link.springer.com/article/10.1007/s10664-021-09975-3
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1764099&dswid=9141
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1764099&dswid=9141
https://link.springer.com/article/10.1007/s10664-021-09975-3
https://link.springer.com/article/10.1007/s10664-021-09975-3
https://link.springer.com/article/10.1007/s10664-021-09975-3
https://link.springer.com/article/10.1007/s10664-021-09975-3
https://link.springer.com/article/10.1007/s10664-021-09975-3
https://link.springer.com/article/10.1007/s10664-021-09975-3
https://www.theseus.fi/bitstream/handle/10024/153831/Dao_Quan.pdf
https://www.theseus.fi/bitstream/handle/10024/153831/Dao_Quan.pdf
https://webthesis.biblio.polito.it/secure/15355/1/tesi.pdf
https://webthesis.biblio.polito.it/secure/15355/1/tesi.pdf

	_GoBack

