
A Comparative study of Long Short-Term Memory and Gated Recurrent Unit

Sebastian Ifeanyi Obeta1*, Dr Enrico Grisan1, Chinazor Vivian Kalu2

*1Department of Data Science, London South Bank University, UK

2Department of Artificial Intelligence with Business Startegy, Aston University

Citation: Obeta, S. I., Grisan, E., & Kalu, C. V. (2023). A Comparative study of Long Short-Term Memory and Gated Recurrent 
Unit. J Artif Intell Mach Learn & Data Sci, 1(1), 1-9.  DOI: https://doi.org/10.51219/JAIMLD/Sebastian-Ifeanyi-Obeta/01

*Corresponding author: Sebastian Ifeanyi Obeta, Data Scientist and NLP Engineer, Cambridge University, UK. E-mail: sebastian.
obeta@gmail.com

Received: 23 December, 2022; Accepted: 17 January, 2023; Published: 20 January, 2023 

Copyright: © 2023 Obeta, S. I., et al. This is an open-access article distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author 
and source are credited.

1

 A B S T R A C T 
In natural language processing (NLP), the assumption that a neural network has an independent state among data samples 

does not apply to sequential data. Hence recurrent neural networks (RNN) have played a key role in sequential dependency in 
natural language processing with the key features of providing context to the processing and tackling vanishing gradient. Long 
Short-Term Memory Units (LSTM) are RNN blocks that can retain essential information even if it is far from the current point 
of analysis (extended memory). Still, they also have a fading effect that favours closer information (short memory). Despite this, 
they still need to remember vital details far from their current position, which goes against the intent of the extended memory 
effect. Gated Recurrent Units (GRU) have shown excellent results in sequential data and were introduced to overcome the 
limitations of LSTM by using two vectors (update gate and reset gate) to decide what information passes to the output. They can 
also train to keep data for a long time without it washing it through time or removing information irrelevant to the prediction. 
Some scholars suggest that gated recurrent units could be a suitable replacement for long short term memory.

This comparative study presented the performance difference between LSTM and GRU and their bi-directional-based neural 
networks when they face the task of classifying text data. The evaluation of Gated Recurrent Unit (GRU) versus Long Short Term 
Memory (LSTM) and their bi-directional versions were carried out on a task of a website based on its content. Our analysis 
showed that a gated recurrent unit (GRU) is a good substitute for long short-term memory for text data classification. The 
bi-directional GRU outperformed the bi-direction LSTM. We recommend a gated recurrent unit as a better alternative to Long 
Short Term Memory on text data classification.
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Introduction 
The effect of the internet and the web has generated a large 

volume of data that increases geometrically from different 
sources. The data generated are mostly in amorphous form and, 
to help gather insights from them, it creates an enormous need 
for data pre-processing and management. One such task comes 
in the form of text classification or clustering.

Text classification is a significant task in natural language 
processing (NLP), and it usually involves dealing with 
unstructured data originating from different sources, such 
as tweets and newsletters. Websites are a specific source of 
unstructured data with varying contents as they can be related 

to newspapers, conferences, sports events, and people’s profiles. 
The text classification task is a concept in NLP that requires the 
classification of text documents or text data into groups. If we 
consider the spontaneous growth of the web, it is evident that 
it has a plethora of content which suggests the need to have 
organised and filtered information.

Text classification tasks are then linked to sentiment analysis, 
topic modelling, web information retrieval, and spam filter. 
There are four classification models in text classification which 
are:

•	 Rule-based (rules drafted or defined by a human), 
•	 Probability concept,
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•	 Learning-based (ensemble model, logistics regression, state 
vector mechanism), 

•	 Deep learning-based (Recurrent Neural Networks, 
Convolutional Neural Networks, Hybrid Deep Neural 
Networks). (Zhang et al., 2022) (Charu & Cheng Xiang, 
2012).

Traditional text classification tasks comprise three steps. 
The first is feature engineering which is dominant in Natural 
Language processing tasks and belongs to a family of models 
tagged bags of words. The bags of word tasks are word count, 
term frequency-inverse document frequency (TF-IDF), and 
N-grams. Although they help extract features from the text, 
semantics, structure, sequence and context of words are lost due 
to the inherent nature of the model of being just a bag of words. 
However, the state of art in feature engineering has improved by 
including part of speech tags and noun phrases. (David, 1992).

 The second form is the feature selection that involves the 
wrapper and wrapper approach. The strategy for the wrapper 
is called try and test, which takes time and involves high 
computational power. In contrast, the filter method picks the 
informative feature by filtering with some metric measure. The 
third and final step form is the machine learning algorithms.

The traditional concepts create a gap and a motivation to 
engage a more sophisticated model that can capture information 
and represent features as vectors of a word, known as embedding. 
Data scarcity is another limitation of a bag of words, meaning 
they must detect sufficient data in a corpus during modelling. 
The introduction of the deep neural network gave insight into 
tackling the data paucity and more neural models that improve 
learning. (Christain, et al., 2003). However, many researchers 
have proposed using easy data augmentation techniques with 
four steps (Xu et al., 2021). The neural network has proven and 
performed better in many NLP tasks.

Classification text data from websites is exciting and 
challenging, as each website differs in many ways, either 
by structure or content. To some extent, one can find almost 
everything online, which translates into the availability of many 
unstructured text data whose full information content can be 
exploited only upon analysis, understanding and tagging.

RNN is a type of neural network that feds the input of a current 
step with the output of the previous step. A typical traditional 
neural network (NN) sees the input and work as independent. A 
word prediction task requires referencing the previous word, and 
RNN tries to solve it with the help of a hidden layer (Casanueva 
et al., 2020). The critical feature of RNN is the hidden layer 
that considers some sequence information. Recurrent neural 
network (RNN) has shown outstanding outcomes in many tasks, 
particularly in machine translation when the output and input of 
a model are of variable length. (Graves, 2012). The milestone 
achieved in the machine translation task is not with the vanilla 
RNN but with LSTM, GRU, and their sophisticated hidden 
layer. (Sepp & Jurgen, 1997) (Cho et al., 2014).

To further improve RNNs performance and fully exploit 
the context provided by textual sequence, some additional 
units specifically targeted at sequential information have been 
proposed:

LSTM is a subset of RNN designed to recognise the pattern 
in sequence by taking time and sequence into account, which is 
the difference between RNN and LSTM from all other neural 
networks. Research showed that RNN and LSTM are powerful 

and valuable types of NN; however, in language tasks, attention 
mechanisms, transformers, and memory networks tend to surpass 
them. In the Mid-90s, German researchers proposed LSTM as a 
network that can preserve error and back propagated through 
time. They maintained a constant error and allowed the recurrent 
net to learn over time steps. This lead to an open channel which 
is a challenge to machine learning and AI since algorithms are 
frequently faced with environments where reward signals are 
delayed.

GRU is a subset of RNN that uses connection through a 
sequence of nodes to carry out a machine-learning task that 
deals with memory and clustering. It helps to adjust the weight 
of the input in a neural network and thereby solves the gradient 
problem common with recurrent neural networks.

However, the question of the most appropriate memory unit 
for text classification and prediction remains unsolved. This 
work uses GRU and LSTM as memory units for the same deep 
network and classifies 53,440 website-based content data. Both 
one-directional and bi-directional variants will be evaluated.

Literature Review
Different research has addressed text classification and 

proposed techniques and solutions. Classification in the context 
of text data is gaining momentum and is one of the complex 
tasks in natural language processing. The text mining task covers 
classification, topic modelling, spam classification, sentiment 
analysis, and document classification. Compared with machine 
learning, deep learning has significantly achieved the natural 
language processing task by passing through several stages 
and document vectorisation. Different deep learning techniques 
have been deployed in various tasks of NLP. A recurrent neural 
network has proved successful, and deep learning recursive 
models for sentiment analysis (Casanueva et al., 2020) and 
language modelling (Richard et al., 2016). (Wu et al., 2022) 
Speech recognition and sentence production from poems and 
visuals (Ankit et al., 2006) (Micro et al., 2018).

The ground-breaking work done by Bengio et al. (1994) on 
word embedding using a neural network model on a language 
model with each word’s preceding contexts (Tomas et al., 2010) 
inspired Mikolov et al. (2013) to propose two novel architectures 
for the continuous bag of words and skip-the n-gram approach, 
which has a vector representation by computing successive 
terms from a large dataset.

The outcome was measured from a similar word task 
compared to the previously performed techniques based on 
different neural networks. The method was used in local and 
linear contexts and was further transformed into dependency-
based word embeddings and global vectors (GIoVe).

Some things could have been improved with the linear and 
local context. The word embedding in a semantic-based tackled 
the linear limitations with an introduction of syntactic contexts 
obtained from the dependency parser. In contrast, the GloVe 
approach addressed the local limitation by looking at the word-
to-word statistics.

Many discoveries have been made with recurrent neural 
networks for language modelling. One such is the arbitrary 
dependency as proposed by (Pengfei et al., 2016). Moreover, the 
ability of a deep learning framework to train models creates a 
whole way to generate relationships between labels and features 
and hence makes prediction accurate. The success of RNN was 
seen in the automatic extraction of features in a document using 
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Given a sequence of value m = (m1, m2,……, mt,) RNN will 
update its hidden state hs as:

        (1)

The implementation of Eq 1 can take this form:

	 (2)

Where g is the sigmoid function, wxh is input to the hidden 
layer weight matrix, hs is a hidden state vector with time, whh is 
hidden to hidden weight matrix and b1 is the bias.  In text data, 
a traditional neural network looks at the data points in isolation; 
however, RNN considers the word’s sequence. If we have a task 
to identify a name in a given sentence with a concept called 
name entity, we need the knowledge of other words surrounding 
it to carry out the task.

Consider the diagram in figure 2.2, where t1, t2 are time steps, 
with input x1, output y1, weight matrix of the input wxy, weight 
matrix of the hidden layer  whh, and weight matrix that controls 
the information from the hidden state to output (why).

bi-directional LSTM and attention mechanism. (Srividhya & 
Anitha, 2010).

LSTM and GRU are algorithms in the recurrent neural 
network. It is imperative to discuss the need for RNN 
architecture and the shortcoming of neural networks in sequence 
data modelling. There has been a generally accepted view about 
neural networks, which is the independent state among data 
samples, and this assumption cannot be applied when sequential 
data is involved. Such sequential data includes speech, language, 
time series, and media data (Akash, 2022) because they display a 
level of dependency within them across time.

The neural network sees the data samples individually, 
which results in the model losing the result that would have been 
seen when being treated as sequential information. To account 
for sequential dependency will be equivalent to joining a fixed 
number of consecutive data points and seeing them as one data 
point. (Alex et al., 2013). The standard technique in representing 
data sequences defines it as a sequence of words. The language 
modelling task with RNN takes words one by one, and the output 
is the probability of the predicted words.

(Tobias & Matthias, 2017) Applied RNN to model the 
sequence of customer interaction in a webshop. They used the 
frequency of customers to predict the probability of a customer 
placing an order within seven days. The input data was a one-hot 
encoder vector which stood for the previous or past action of 
customer orders and was compared to logistic regression with 
the help of feature engineering for a space of 5 months. Both 
achieved a similar result and showed by visualisation how 
consumer behaviour changes over time. The static nature 
of feedforward neural networks over a dynamic classifier 
necessitated the RNN architecture. To extend the feedforward 
neural network to a dynamic classifier, they fed the signals from 
the previous timestamp into the network. They were called 
recurrent neural networks. (Paul, 1990).

The modified version of feedforward in NN was the capability 
to reference the previous time frame because the feedback was 
either vanishing or exploding. The RNN is usually limited to 
10-time steps, which is also a significant limitation. Long Short-
Term Memory (LSTM) was introduced to learn as long as 1,000 
time steps depending on the complexity of the network (Sepp 
& Jurgen, 1997) by enforcing a constant error flow through a 
continuous merry-go-round approach in a unit.

Although LSTM achieved remarkable success in long-lasting 
unit memory compared to RNNs, it still needs to remember 
pieces of information that seem far from the current point or 
position. It became a big challenge, and more pronounced when 
(Guozheng et al., 2018) attempted to use LSTM for document-
level sentiment classification. Many researchers took up the task 
of modifying LSTM to store information, and the outcome gave 
rise to different models of LSTM. (Ke et al., 2016) Proposed 
adding external memory to LSTM, but the result could have 
been better concerning time because of the vast memory matrix. 
(Duyu et al., 2016) Considered the bi-directional LSTM with 
attention model on document sentiment and had a 95% success.

GRU was demonstrated as an extension of LSTM by 
(Junyoung et al., 2014). By eliminating the output gate, which 
is in charge of writing the contents of the memory cell to a 
more significant net at each time step, his design reduces the 
complexity of LSTM. The result of Junyoung et al. on a music 
dataset showed that the GRU made faster progress in actual CPU 
time, although the effect is inconclusive. They suggested that the 

Figure 2.1: RNN Architecture (Pascanu, et al., 2013).

choice of framework depends on the dataset and corresponding 
task.

RNN  

RNN architecture has a significant drawback which (Bengio 
et al., 1994) highlighted the difficulty in training an RNN because 
of its vanishing gradient descent. Researchers tried to solve 
this by proposing two main approaches to reduce the negative 
impact. The first approach uses a better learning algorithm rather 
than stochastic gradient descent. (Bengio et al., 1994), (Pascanu, 
et al., 2013), (Van Gompel et al., 2022). The second suggestion is 
to use an activation function which is more than just serving as an 
activation function with affine transformation and a gating unit. 
The second suggestion gave birth to another activation function 
or a recurrent unit called long short-term memory (LSTM) 
(Sepp & Jurgen, 1997). Shortly after, another recurrent (gated 
recurrent unit GRU) was proposed by (Cho et al., 2014). The 
two frameworks (LSTM and GRU) have been shown to perform 
well in tasks requiring long-time dependencies. (Sutskever, et 
al., 2014) (Dzmitry, et al., 2014).2.2 Limitations of Multilayer 
Perceptron Layer.

MLP cannot learn from sequence information from data. 
Simple expressed by saying:

•	 it loses its sequence information hence,

•	 Context is lost.

RNN Architecture

The word recurrent in RNN suggests that it performs the same 
task for every sequence by being dependent on the previous step. 
It has two key features:

•	 A hidden state that is distributed in nature and allows 
information storage of the past and,

•	 Allows the hidden states to update themselves in complicated 
and nonlinear dynamics.
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A time step t1 with a word x1 as input will compute some 
activation to give output y1 which is determines if the word is a 
person’s name or not. The time step t2 will take word x2 and give 
output y2. The difference between MLP and RNN is the time step 
t2 in making a prediction. It will not only consider the input x2 but 
also take the hidden state of the previous word h1 because it has 
the information that has been computed from the previous one. 
Similar at each time step when making a prediction, it will not 
take only the input but the hidden state of the previous time step 
that has the information of all words processed. It will use all 
the information to make predictions. The first step in forwarding 
propagation in RNN is:

Calculate the current hidden state:

 where g is tanh/ReLU      (3)

Calculate the current output  where 
g is sigmoid/softmax	  (4)

RNN architecture has a significant drawback which (Bengio 
et al., 1994) highlighted the difficulty in training an RNN because 
of its vanishing gradient descent. Researchers tried to solve this 
by proposing two main approaches to reduce the negative impact. 
The first approach uses a better learning algorithm rather than 
stochastic gradient descent. (Bengio et al., 1994), (Pascanu, et 
al., 2013). The second suggestion is to use an activation function 
which is more than just serving as an activation function with 
affine transformation and a gating unit. The second suggestion 
gave birth to another activation function or a recurrent unit 
called long short-term memory (LSTM) (Sepp & Jurgen, 1997). 
Shortly after, another recurrent (gated recurrent unit GRU) was 
proposed by (Cho et al., 2014). The two frameworks (LSTM 
and GRU) have performed well in tasks requiring long-time 
dependencies. (Sutskever, et al., 2014) (Dzmitry, et al., 2014).

Need for LSTM-and GRU

The input weight (wxh), Output weight (why), and hidden 
state (whh) weights are randomly initiated during the forward 
propagation state and at backpropagation state, we compute the 
loss of the network by updating the weight of the matrix for better 
prediction. The gradients are calculated for the backpropagation 
of the loss value concerning the weight. The gradient descent 
algorithm updates the weight so as to have a minimal loss as 
shown in fig 2.3.

can be mitigated by truncating the backpropagation process or 
using the techniques of gradient clipping.

The known methods to train an RNN are backpropagation 
through Time (BPTT) and Real-Time   Recurrent Learning 
(RTRL). (David, et al., 1986) (Paul, 1990), though 
backpropagation is the standard method. The way the two 
are weighted differently makes a difference. The identical 
backpropagation procedure is followed by BPTT, except the 
chain rule is used repeatedly instead of only once.

 The objective function will depend on activating the hidden 
layers and their influence within the time step. The vanishing 
gradient occurs during training in RNN (backpropagation), 
predominantly seen if the training involves long input sequences 
or many layers. The error gotten during the training updates 
the weight of the network towards the right with its magnitude. 
Mathematically this is achieved with the chain rule. It will pass 
through matrix multiplication either by shrinking or blowing up 
exponentially for long sequences. It then means that having a 
too-small gradient will result in the weight needing to be updated 
effectively, whereas large gradients can cause instability. There 
are gates in LSTM and GRU designed to solve this with their 
additive components. They keep the existing hidden state and 
add new content to it. This allows the error gradients to go 
through the backpropagation process without vanishing or 
exploding too quickly.

Long Short-Term Memory

Various strategies were proposed to tackle the issue of 
vanishing gradient descent in RNN. Some such attempts 
simulated error propagation (Bengio et al., 1994) made in the 
1990s. Bengio et al. introduced time delays (Kelvin & Alex, 
1990), sequence compression (Micheal, 1991) and the LSTM 
architecture. (Sepp & Jurgen, 1997). The first development of 
LSTM was to reduce the vanishing gradient rate and make RNN 
effective for long-term memory tasks. The architecture of LSTM 
has four gates. The input, forget gate, output, and memory cell. 
The gate determines what should be written to or read from 
the memory cell, where the information is kept. The gates are 
the medium of transport of information based on the weights. 
However, some weights, such as the input and the hidden state, 
are adjusted during the learning rate. Like a filter on a waterway 
that keeps contaminants from going through, these gates aim to 
filter out any undesired input or information.

However, the gates are trained to accurately detect what is 
helpful from what is not.

Where σ is an activation function is (sigmoid), xt is the input 
vector with time, hs-1 is the hidden with respect to time, w is the 
hidden input weight matrix and is the bias. 

The input gate detects what information is to be stored in the 
long-term memory but can work with the information from the 
current input short-term memory from the previous time step 
and will filter the information that are not necessary. This is 
achieved mathematically with two layers. The First layer selects 
the information to pass to the next layer bypassing it with short-
term memory through a sigmoid activation function. This layer 
is trained through backpropagation, where the weight is updated 

Figure 2.2: Training RNN Model (Pengfei, et al., 2016).

Figure 2.3: Backpropagation process.
There are two main challenges with RNN, the first is the 

vanishing gradient caused by the network’s inability to learn 
long-term dependency, and the second is the exploding gradient. 
Here, the gradient is too large and tends to crash the model 
during training due to numerical overflow. To overcome the 
vanishing gradient, initialize the weight so the gradient will not 
vanish. However, it is hard to achieve such; hence LSTM and 
GRU are designed to accomplish that. The exploding gradients 
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and trained to detect helpful information as seen in Eq 6. The 
second layer in the input gate takes the current input and passes 
it through a tanh function to regulate the network.

It is a replica of LSTM but without an output gate which allows 
the flow of content from the memory cell to the large net at each 
time step. It is said to be fast for training purposes and its internal 
makeup is not complex but requires few computations to update 
the hidden layer. GRU is made up two gates:

Reset gate ( ) and update gate (. The reset gate is responsible 
for the combo of input with the memory cell and the update gate 
looks after and defines how much of the memory cell to store. 
These gates act like filters but are highly trained.

		  (10)
The difference between LSTM and GRU is that the former 

contains two different states that pass between the hidden and the 
cell state. While the later has only one hidden state transferred 
between time steps. The single hidden state has the ability to 
hold both the long term memory and the short term at the same 
time with the help of the gated mechanism that hidden and input 
information goes through.

Figure 2.4: LSTM Framework (Pascanu, et al., 2013).

Figure 2.5: Input gate Flow (Gabriel, 2019).

The forget gate acts as a filter but takes the product of the 
forget vector seen from the current input and incoming short-term 
memory. To generate the forget vector, the long-term memory 
and the current input are passed through a sigmoid function 
similar to the input layer, which determines what information 
to dis-regard and pass through to the next cell, as seen in Eq 5.

Figure 2.6: Forget gate flow (Gabriel, 2019).
The output does most of the work. Here it takes the current 

input and previous short-term memory state and adds to an 
entirely new long-term memory to produce a recent short-
term memory that will be passed through to the next step. The 
previous short-term memory and current input will pass through 
the sigmoid function with different weights to create a third filter.

Figure 2.7: Output gate flow (Gabriel, 2019)

A Bi-directional LSTM is made up of two RNNs. The first 
function of the RNN is responsible for the sequence in regular 
order or forward movement, and the second is in charge of the 
reading in a reverse way. The training of Bi-directional LSTM 
does not capture the encoding in any particular information; 
instead, the encoded vectors are fed further into the network 
layer to a point a prediction is made, and a loss is incurred. This 
helps it extract all relevant information for the task at hand from 
the input sequence.

Gated Recurrent Unit (GRU)

GRU is a branch of LSTM, introduced by (Cho, et al., 2014). 

Figure 2.8: GRU Framework (Charu, 2018).
The reset gate is generated using the hidden state from the 

previous time step and inputting data at the current time step. 
Representing it mathematically, we take the product of the 
previous hidden state and current input and sum them with their 
respective weight before passing it through a sigmoid function 
which will squash them into 0 and 1, as seen in LSTM gates. 
When the entire model is trained with backward propagation, the 
weights will be updated, and by then, we will learn to keep only 
important information.

The Update gate is just like the reset, and the hidden gate 
computes the previous and hidden state and the current hidden 
state. The reset and update gate is obtained with the same formula 
but with a slight difference in the weight multiplier between 
the hidden and input state are unique. This means that the final 
output or vector for each gate will be different and makes them 
serve specific functions.

Methodology/Data Analysis
This research was built with Keras because it is simple and 

easy to use, supports the hardware of GPUs for parallel Matrix 
Multiplications, supports python programming language, and 
has a large community that contributes to its development. We 
looked at the embedding layer, model, and evaluation and saved 
the trained model. The experiment was performed on a google 
collab connected to Python 3 with a google compute engine 
power of RAM 3.14 GB/12.72 GB and a disk of 31.73 GB/68.40 
GB. Two models were developed for each architecture. The 
experiments first evaluated the performance of LSTM, BiLSTM, 
BiGRU, and GRU on 53 447 websites’ content by using the 
sequence information to categorise the website based on its 
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content. The experiment was done with python packages such 
as pandas and NumPy, used for data manipulation, and NLTK 
package for text processing. The dataset was first cleaned by 
removing the noise associated with text data; label encoding was 
carried out, validation splitting by 70% and 30%, padding and 
finally, the model build.

Data description

The dataset contains 53,447 rows meaning there are 53,447 
websites; each website has associated tags with text content, 
some with multiple tags with suitable varieties such as websites 
of news, publication, profile (LinkedIn), conferences, forums, 
clinical trials, and thesis.

Data Preprocessing

For text data, preprocessing is an essential task in NLP. The 
purpose of data preprocessing is to remove noise and incomplete 
and complete data. Data from different sources may have other 
formats. 80% of data or text mining tasks are done at this stage. 
(Sebastian & Joddelle, 2020), for this research, the preprocessing 
done in this task is cleaning, Label encoding, validation split, 
and padding.

Cleaning

Text cleaning aims to remove unwanted or useless 
information present in text data. Examples of such words are 
stop words, commonly called common entities. Examples are 
hashtags, punctuations and numbers. We have slang sometimes 
seen in text data and human errors (spelling and grammar 
errors). There are different reasons why text data contain noise. 
A few reasons are human errors, which could result from data 
errors, software digitalization accuracy, machine translation, or 
web scraping. It becomes necessary for text cleaning to be done. 
Text cleaning, therefore, is a systematic removal of text noise 
that helps reduce text data’s dimension; algorithms learn better 
and fast, removing repetitive information and helping to focus 
on the entity present in a text.

The following cleaning task was done on the dataset:

•	 Convert all text to lowercase for simplicity and uniformity 
when working and training the data.

•	 Removal of links and hyperlinks. Generally, links or 
hyperlinks play no role in text data analysis or any form of 
texting mining.

•	 Special character, punctuation, number removal, and text 
inside {}, (). Removing special characters in text data is 
essential to avoid concatenating between words and making 
them unavailable.

•	 Removal of stop words. This eliminates unimportant words 
in giving intelligent patterns or information to the task at 
hand. We used the NLTK package to remove stop words in 
this task.

Label Encoding.

The main challenge with text data is converting text or 
categorical data to numerical data and making the algorithm 
accept it and make sense of it. The neural network makes use 
of numerical values as input. There are many ways to carry out 
such a task; I used a label encoder for this research, and label 
encoding was only done for the target column. Label encoder is 
a package from the SciKit-learn library in python. The dataset 
contains different tags, which are our target variables. Hence, we 
labelled the encoder to convert it to numerical data for our deep 
learning model to learn.

Validating Splitting

This research was split into two. Training and testing. The 
training is where the model learns and tests to validate our model 
prediction on the subset. The split was 7:3 where the evaluation 
is on 30% of the data. In this task, I used the text split function 
from SciKit-learn where y is the label encoder target.

Padding

Sequence data have a common context of having different 
lengths. Padding in this task is to ensure all of my sequences 
has consistent length. To find out the length to be used for this 
research, I checked for the sequence distribution of the dataset. I 
plot a number of words in each sentence as shown in fig 3.

Figure 3: Words distribution.
The histogram shows that most of the sequence falls within 

length 500. Hence, 500 was picked as the maximum length 
for 500 for the padding. All sequences less than 100 will have 
zero values added. Before padding the sequence, the text will 
be tokenised with Keras and further label encoded with text to 
sequence the individual words in the text. Text to sequence is 
another form of dense vector representation of words which is a 
class approach called embedding. Embedding is a transformed 
way of using a bag of words techniques to represent each word 
in a corpus with a sparse vector or an entire vocabulary. With 
embedding techniques, words are seen as dense vectors showing 
the projection of words in vector space. The position of tokens 
in the vector space is learned from the corpus and considering 
the surrounding words when it is used. Two popular methods for 
word embedding are word2Vec and GloVe.

This research used the Keras framework which covers 
embedding layers for neural networks on text data. It is flexible 
and used in different ways such as:

•	 To learn word embedding which can be re-used in another 
model,

•	 In deep learning model, it can equally learn with the model 
itself

•	 It can accept pre-trained models.

The task achieved is to create vocabulary and assign an 
index to every unique word, use the word index to convert word 
sequence to integer sequence, and append zero to the maximum 
length of the sequence to obtain a uniform sequence of length. 
The last step before the model build is to use two categorical 
functions of Keras to make the target variables as one-hot 
encoding.
Implementations and Hyperparameters

For this task, two different recurrent networks (LSTM and 
GRU) and their bi-directional. As the primary aim is to compare 
each model fairly with the same number of parameters. The 
implementation of this model is with deep learning framework 
Keras (Keras, n.d.). This is a deep learning API running a 
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machine learning platform TensorFlow without showing the 
expression of gradients as they are computed automatically. 
The Embedding layer in Keras automatically creates the matrix 
which maps the integer to the embedding. They are learned 
during the backward propagation.

In Keras there two ways of building a model. The first is 
through a sequential API or functional API.

Due to the long time required to train the model, we tried a 
small set of values. The first layer is the embedding which passes 
vocabulary size and input length. I chose 100 as my embedding 
layer which means that each word will be represented by a 
vector of 100 numbers. This is similar to word2Vec. The input 
length shows the size of the sequence in which 500 was used 
as seen in fig 4.3. I imported the sequence, LSTM, BiLSTM, 
dense, embedding layer, GRU, and BiGRU. I imported the early 
stopping which helps the training process in the neural network 
at the right time. When the validation loss keeps increasing for 
some epoch which is specified, the training stops.

To avoid the model from overfitting, we used the early 
stopping techniques and stopped at a point when the evaluations 
stopped to improve.

The early stopping saves a copy of the model. We choose 
300 as the LSTM layer, a time step of 0.1, recurrent drop out 
as 0.2 dense layers as 64 neurons, output Layer 9 neuron of 
the 9 categorical tags. The optimizer used was Adam and loss 
categorical cross-entropy for classification. Batch size at 100 
and epoch of 100. 

Result and Analysis
In this section, I looked at the model built for each model, its 

diagnostic plots for a better understanding of the performance of 
the model over time.

LSTM

Figure 4.1: LSTM model summary.
A step forward was to fit the model to the training data 

and evaluate on hold outset. The metrics to test the model is 
accuracy. The early stopping model will be saved when we 
get the best size. I used a batch size of 1200, epoch as 100 
although we have early stopping in place. Each of the epoch for 
LSTM training takes approximately 3525 seconds but on a fast 
GPU, it took 80 seconds to train. The validation accuracy kept 
increasing and after some time the validation loss and accuracy 
stops improving. That’s when our model stops training. Fig 5.2 
shows the training loss continued to decrease but validation loss 
decreased at a point became stable. We used the classification 
model to create a report on a validation set with F1 score and Fig 
5.3 gives us a score of 0.91 percent.

GRU

The architecture was swapped and further to fitting to the 
training data and evaluate on hold-outset. The metrics to test the 

model is accuracy. The early stopping model is saved at the best 
size. A batch size of 1200, epoch as 100 although we have early 
stopping in place was set. Each of the epoch for GRU training 
takes approximately 207 seconds but on a fast GPU, it took 48 
seconds to train. The validation accuracy kept increasing and 
after some time the validation loss and accuracy stop improving. 
The classification model to create a report on the validation set 
with F1 gives us a score of 0.92 percent in Fig 4.5

Figure 4.2: Diagnostic plot.

Figure 4.3: LSTM score.

Figure 4.4: GRU Model Summary.

Figure 4.5: GRU score.

Bi-direction analysis of GRU and LSTM.

The same hyperparameters for GRU and LSTM was used 
for their bi-directional and below are the outcome. BiGRU 
performed better than BiLSTM.

BiLSTM, the epoch training time was 225 seconds. Recall 
that it took LSTM 3525 seconds. BiLSTM trained with half of 
the time it will take LSTM to train. 

BiGRU trained with 45 seconds each epoch which is 20% of 
the time it took a full GRU to train.  Very fast indeed. 
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Conclusion
This research aimed to achieve effectively three main goals:

•	 Categorising website-based content.

•	 Utilising the sequence information to make a prediction 
based on the context.

•	 Providing an analysis of the characteristics of LSTM and 
GRU with an extension to their bi-directional on-text data 
with a recommendation on the best model for text data 
classification.

The goals were achieved on a text dataset that contains 54,445 
website contents. Python programming language was used on 
google Colab with Keras to perform all necessary text cleaning 
and model build. The LSTM, GRU, BiLSTM, and BiGRU were 
built with the Keras function but first was the embedding layer 
that creates the embedding matrix by mapping the integer to the 
embedding for learning during the backpropagation. The output 
label is converted to an integer and a one-hot vector. Padding, 
sequence distribution, and tokenisation were done on the text 
data as part of text classification. The model layer (GRU, LSTM, 
BiGRU, and BiLSTM) was built with regularisation techniques 
and a recurrent dropout to drop recurrent hidden units between 
time steps.

While there has been a different school of thought that GRU 
could be a better replacement for LSTM, the outcome of such 
research hinted LSTM performs better than GRU, although it was 
done on a small text dataset. Apart of small text data, computing 
power was the case of the experiment, which took more than 24 
hours for one model to be built. Hence, they decided to make a 
small data set with LSTM performing better.

My approach to this work and using a large text dataset 
provides new insight and clearly illustrates that GRU performed 
better than LSTM in terms of accuracy and training time. It is a 
better algorithm for text data classification. Comparing BiLSTM 
and BiGRU, BiGRU performed better with 20% less time than 
BiLSTM. 

To better understand the implication of these studies and 
how gated unit improves learning and solidify this work’s 

contribution, more experiments will be required in the future 
with.
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