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1

 A B S T R A C T 

The textual information is uploaded tremendously in the internet with different forms of social network platforms like 
Twitter, Facebook, Blogs, Forums and Review Sites. Most of the customers depend on opinions of consumers to purchase any 
item or visiting any place. Sentiment analysis is one such research area to extract the opinions like positive, negative or neutral 
of consumers on a particular product or service by analysing their reviews. The reviewers also specify suggestions to companies 
or organizations to improve their quality of product or service. Suggestion mining is one type of sentiment analysis which 
is used to extract suggestions like tips, wishes and recommendations from the text by analysing their text. The researchers 
proposed different types of methods like rule based, feature based, machine learning based and deep learning based approaches 
for suggestion mining. In machine learning based approaches, it is difficult to represent the text by considering syntactic and 
semantic information of text. In this work, a Deep Learning based approach is proposed for suggestion mining to identify 
whether a sentence is a suggestion or non-suggestion. The SemEval 2019 Competition subtask-A suggestion mining dataset is 
used in this experiment. The word2vec and GloVe methods are used for generating word embeddings. Different deep learning 
techniques such as Recurrent Neural Networks, Long Short Term Memory, Gated Recurrent Unit and BERT models are used in 
this experimentation. The BERT model attained best accuracy for suggestion mining when compared with other deep learning 
techniques.
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1 Introduction
The rapid expansion of the internet has established a 

main way for humans to exchange information and ideas. 
Even though millions of hours of video and audio clips get 
uploaded and streamed online each day, written text is still 
the dominant medium of this information exchange. The texts 
generated by Review-based portals and online forums contain 
different types of opinions like positive, negative or neutral on 
products or services which is the subject of sentiment analysis. 
The information extracted from these sources offer valuable 
information to the customers about products and services. 
On the other hand, the users also specify different types of 

suggestions to the companies to improve their quality of product 
or service. Unlike opinions, suggestions can appear in different 
parts of text and also appear more sparsely. Suggestion mining 
or identification of suggestions within the text is a relatively 
new area which is gaining popularity among many private and 
public sector organizations, service providers and consumers/ 
customers at large due to its number of uses.

Suggestion mining is defined as the extraction of suggestions 
from unstructured text, where the term ‘suggestions’ refers 
to the expressions of tips, advice, recommendations etc. We 
often see comments on products in product forums which are 
recommended or not recommended, and some users will consider 
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The traditional approach to any text classification problem is 
by extracting features from the dataset or by encoding numeric 
vectors to represent the text. When using a text classifier, one 
of the simplest ways to represent text is to use bag-of-words 
(BOW), where each word (feature) in the text is stored together 
with their relative frequency and ignoring word position. It also 
requires huge corpus of labelled data to have good representation 
of the data. A more advanced way to represent features is by 
using word embeddings, where each feature is mapped to a 
vector of numbers also called as embedding. One popular way to 
create these word embeddings is to use word 2vec6. Word 2vec 
can capture the semantic meaning of words, providing more 
competent feature representations than the previously mentioned 
BOW approach. The embeddings from word2vec work relatively 
well, but are still missing an essential aspect of natural language 
context. In this work, we present a deep learning based approach 
for suggestion mining that will eliminate the steps required to 
manually extract features by leveraging pre-trained embeddings 
generated using BERT to form contextual representation of the 
textual statements that preserves the semantics and syntax of the 
language. The experiment conducted with RNN, LSTM, GRU 
and BERT techniques on the dataset provided in Sem Eval 2019 
competition task A.

This work is structured in 8 sections. The existing works of 
suggestion mining is analysed in Section 2. The description about 
dataset is presented in Section 3. The proposed deep learning 
based approach for suggestion mining is presented in Section 
4. The word embeddings are explained in Section 5. The deep 
learning techniques are described in Section 6. The experimental 
results are expressed in Section 7. The conclusions and future 
directions of our work mentioned in Section 8.

2. Related Work
Suggestion mining is defined as the extraction of suggestions 

from unstructured text7. Suggestion mining is still a relatively 
young research area as compared to other natural language 
processing issues like sentiment analysis3. While suggestion 
mining is of great commercial value for organizations to 
improve the quality of their entities by considering the positive 
and negative opinions collected from platforms. The target of 
this task is to automatically classify the sentences collected from 
online reviews and forums into two classes which are suggestion 
and non-suggestion8.

Authors9 presented a system for Suggestion Mining task. The 
proposed system employed ensemble of Domain-Adversarial 
Neural Networks (DANN) by using Structured Self-Attentive 
Sentence Embedding as a feature extractor. The part-of-speech 
tagging is used to achieve better adaptation towards target domain 
and the DANN extended with a Target Preserving component 
in a form of words decoder for target domain sentences. The 
proposed system reached F1 score up to 0.778 on test dataset. 
They achieved 7th rank in this subtask B.

Authors10 described a system based on directed un-weighted 
graphs for Suggestion Mining Sub Task A of Sem Eval 2019. 
During the evaluation, the proposed system got 31st rank in the 
competition subtask A dataset. They discussed the results of a 
system in the development, evaluation and post evaluation. In 
this system, each class in the dataset is represented as directed 
unweighted graphs. Then, the comparison is carried out with 
each class graph which results in a vector. This vector is used as 
features by a machine learning algorithm. The model is evaluated 

whether to purchase the product based on these comments. 
Suggestion mining is also defined as automatic extraction of 
recommendations from a given text. These texts that express 
user suggestions can usually be found in social media platforms, 
blogs, or product online forums. Suggestion mining is a trending 
research domain in recent times to enhance the product or 
service quality. To better recognize suggestions, instead of only 
matching feature words, one must have the ability to understand 
long and complex sentences.

Sentiment analysis is a process of computationally identifying 
and categorizing the opinions from unstructured data. This can 
be used to identify a user’s perspective of a product like positive, 
negative or neutral. Opinion mining is used to identify whether 
the product is a success in the market or not. Suggestion mining 
finds out ways to enhance the product to satisfy the customers. 
Review texts are mainly used to identify the sentiments of the 
user. Besides sentiments, review texts also contain valuable 
information such as advice, recommendations, tips and 
suggestions on a variety of points of interest. These suggestions 
will help other customers to make their choices and the sellers 
improve their products. Suggestion mining is relatively a young 
field of research compared to sentiment analysis. While mining 
for suggestions, the propositional aspects like mood, modality, 
sarcasm, and compound statements have to be considered. It 
is observed that, in some cases, grammatical properties of the 
sentence alone can be used to identify the label, while in other 
cases semantics play a significant role in label classification1.

Several applications such as Customer to customer 
suggestions, Enhancement of sentiment detection, product 
improvement, Recommender systems and Suggestion 
summarization used the techniques of suggestion mining2. The 
customers are giving suggestions like warnings, tips and advice 
about different commercial entities in blogs, reviews and other 
social media platforms. Suggestions are mined mainly for 
business people to improve the product or for fellow customers 
to detect advice. These suggestions are helpful for the other 
customers before selecting any entity. The sentiment analysis 
extracts opinions like positive, negative or neutral opinion on 
entities from the text. The sentiment analysis is poor in detection 
of irrelevant and neutral sentiment in the sentences. In this 
aspect, the suggestions are helpful for the experts of sentiment 
analysis to improve the detection of sentiment in the text. 
The suggestions of consumers about a product are helpful for 
the product developers, owners and implementers to enhance 
their product quality. The recommender systems recommend 
the products based on the opinions of the consumers on the 
product. The suggestion mining system improves the behaviour 
of recommender systems by adding additional information of 
suggestions to recommend the better products. The opinionated 
text contains different opinions on different entities. The 
suggestion mining techniques are used to summarize the 
different opinions on a product.

Unlike opinions, suggestions can be more likely extracted 
also by pattern matching. Some researchers extracted suggestions 
by using different heuristic features and keywords such as 
suggest, recommend, advise3. Some works deal with domain 
terminology, thesaurus, linguistic parser and extraction rules4. 
Linguistic rules were also used for identification and extraction 
of suggestions in sentiment expressions5. Suggestion mining can 
be realized as standard text classification and classified into two 
classes such as suggestion and non-suggestion.
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on hold on strategy. The binary class system achieved evaluation 
value of 0.35. Authors11 proposed an approach by using expert 
defined rules and compared with machine learning models. 
They observed that the expert rules achieved best performance 
when compared with machine learning model. For the machine 
learning approach, they tried with wide spread of feature types 
such as character n-grams, token unigrams, token n-grams, 
syntactic structure of the main clause, syntactic rewrites of all 
constituents and syntactic n-grams.

Authors12 discusses the rule-based method to find out the 
suggestions from the reviews. They have identified two kinds of 
‘wishes’ namely the desire to improve the product and the desire 
to purchase the product. They have formulated the rules using 
modal verbs and certain sentence patterns. Authors13 develop 
an ontology-based knowledge representation for suggestion 
mining.

Authors14 proposed a suggestion mining system for the task A 
and B in SemEval-2019. This system used linguistic rule-based 
method for feature extraction, SMOTE sampling technique is 
used for data augmentation to solve the imbalance problem in 
the dataset and deep learning technique (Convolutional Neural 
Network (CNN)) for classification. The Bag of Words (BOW) 
features are used in MLP, RF and CNN classifier for suggestion 
mining. The results of CNN are compared with Random Forest 
classifier (RF) and Multi-Layer Perceptron (MLP) model. 
They found that the performance of CNN model is good when 
compared to MLP and RF classifiers for both the subtasks.

Authors15 presented a study about different classification 
algorithms like Random Forest (RF), Logistic Regression (LR), 
Sublinear Support Vector Classification (SSVC), Multinomial 
Naive Bayes (MNB), Linear Support Vector Classification 
(LSVC), CNN and Variable Length Chromosome Genetic 
Algorithm-Naive Bayes (VLCGA-NB). The developed system 
attained F1-scores of 0.37 and 0.47 on evaluation data of task 
B and task A respectively. They find that the results of this 
system outperformed the base line results of suggestion mining. 
The MNB achieved best F1-score for non-suggestion class and 
SSVC attained best F1-score for Suggestion class.

Authors16 built a domain-independent suggestion mining 
model to classify suggestion sentences by developing a hybrid 
approach which uses rule-based features along with RNN. The 
proposed model obtained a F1-score of 74.49% for suggestion 
mining which is higher than baseline accuracy of 57.77%. 
Ilia Markov et al., experimented [P46] with different types 
of handcrafted features, digits, sentiment features, verbs and 
function words for subtask A and handcrafted features for 
subtask-B. They used handcrafted keywords of 57 for subtask-A 
and keywords of 77 for subtask-B. The Support Vector Machines 
(SVM) classifier is used for training purpose. Term frequency 
measure is used to determine the feature value in the vector 
representation. The proposed system attained F1-scores of 51.18 
and 73.30 for task A and B respectively. 

3. Description of Dataset
“Task 9 - Suggestion mining from online reviews and forums” 

is introduced in Sem Eval 2019 competition which has two 
subtasks8. Subtask A is to classify a sentence into a suggestion or 
a non-suggestion. Subtask B is a cross-domain testing in which 
the model learned from a domain-specific dataset and this model 
is used to classify dataset from a new domain. For subtask-A, 
suggestion forum dataset is used for training and testing. For 

subtask-B, suggestion forum dataset is used for training and 
hotel review dataset is used for testing purposes. The suggestion 
forum training dataset has 2085 instances of suggestion class 
and 6415 instances of non-suggestion class. The trial test set for 
suggestion forum dataset has equal number of instances (296) 
for both classes. In this work, subtask A dataset is considered 
for experiment. The dataset for suggestion mining task consists 
of feedback posts on Universal Windows Platform available 
on uservoice.com. The training and development sentences 
are combined in the final dataset. The final dataset divided into 
70% data for training and 30% of data for testing. The dataset 
description is expressed in Table 1.

Table 1: Description about dataset for subtask A.
Training Development Test

Suggestions Sentences 2085 296 87
Non Suggestions Sentences 6415 296 746
All 8500 592 833

The researchers presented their results with different 
performance metrics like recall, precision, accuracy, F1-Score. 
In this work, accuracy metric is used for testing the suggestion 
mining performance. Accuracy is number of test sentences 
predicted their suggestion correctly from total sentences. In this 
work, different pre-processing techniques are applied on the 
dataset to remove irrelevant data. The pre-processing of input 
samples is one of the most important phases in natural language 
processing. For user generated content, pre-processing is even 
more important due to noisy and ungrammatical text. For this 
suggestion mining task, we used different pre-processing 
techniques such as removal of non-alphabetic characters, 
expanding the contraction words, lowercase conversion and 
removal of punctuation characters.

4. Proposed Deep Learning based Approach for 
Suggestion Mining

In this work, deep learning based approach is proposed for 
suggestion mining. The proposed approach is displayed in Fig. 
1.

Figure 1: The deep learning based approach for suggestion 
mining.

In this approach, different pre-processing techniques are 
applied on the dataset to prepare the dataset for extracting 
suitable words. After cleaning the dataset, extract the words. 
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The Word2Vec and GloVe methods are used to generate the 
word embeddings. The word embeddings are given as input to 
different deep learning techniques such as RNN, LSTM, GRU 
and BERT. The deep learning techniques predict the accuracy 
of suggestion mining. The next sections explain the word 
embedding techniques and deep learning techniques.

5. Word Embeddings
 One of the most basic approaches for representing the text 

is a Bag-Of-Words (BOW) model, where each word in the text 
gets transformed into a vector and mapped with another vector 
consisting of the corresponding word counts. This is simple 
and quite effective procedure in many cases, but it comes with 
some issues. One of the main ones is that a BOW representation 
disregards the position of individual words in a text. Natural 
language is heavily context dependant and removing a word from 
its context changes its semantic meaning completely. Another 
problem is the sparse encoding of the vectors that makes them 
sub-optimal for machine learning algorithms17.

An alternative approach to BOW is to use a vector semantics 
method, where each word is represented in a multidimensional 
semantic space. This method assumes that words which are 
frequently co-occurring also share some semantic meaning. 
These co-occurring words are modelled as vectors also referred 
to as embeddings. A semantic similarity measure is obtained by 
calculating the dot product of two embeddings which indicates 
how close they are to each other in the semantic space and 
how similar the words represented by the embeddings are. The 
embeddings are based on a term-term matrix17. This means 
that each word has its own row in the matrix with columns 
corresponding to all the words in the vocabulary. Each cell 
indicates how often the word in the row co-occurs with the 
word in the column. These rows are constitutes the embeddings. 
However, due to how natural language is structured, each word 
in the vocabulary will only co-occur with a small subset of the 
total number of words. As a consequence, most of the cells in the 
matrix are going to be empty which means that a large portion 
of each embedding will be filled with zeros. This is often called 
sparse vector representations.

The sparse vectors are often replaced by dense vectors. The 
dense vectors offer some advantages over the sparse vectors, 
where the most prominent one is that their fewer dimensions is a 
better fit for feature representation in machine learning systems. 
A system that uses shorter, more dense vectors, have to learn 
substantially fewer weights than a system using sparse vectors. 
This has a significant impact on the training times of the system. 
Also, due to the reduced number of weights, a system with dense 
vectors is less susceptible to over-fitting problems17. All machine 
learning techniques require representation of text in numerical 
format so that it can be consumed by the neural networks. The 
representation of the words is learned by training models with 
enormous text data. The model tries to form representation of 
the word by taking into account the words adjacent to it. Words 
which are similar to each other will have their positions nearby 
to each other in vector space and vice versa for dissimilar words.

A Numerical representation which can capture syntactic 
and semantics of the language is the most effective way of a 
good embedding method. Traditionally researchers have spent 
a lot of time in formulating embeddings for a particular dataset 
before even moving to the actual task. Modern word embedding 
techniques reduces the number of dimensions from thousands to 

few hundreds. One of the important parameter in word embedding 
is deciding the number of dimension for representation which 
is best figured out empirically. Higher number of dimensions 
might bring better accuracy sometimes but it also brings in extra 
computational cost. A right balance needs to be figured out and is 
generally dependent on the dataset and the problem which needs 
to be solved. To generate dense vector representation of words, 
Word2vec needs a local context window parameter to define the 
number of words to consider while training embeddings.

Several researchers used word2vec and fastext for 
representing text data into vector format. Word2Vec used neural 
network to form representation of words by learning their 
associations with other words from large corpus of text. Fastext 
is an extension to word 2vec which learns embeddings of n-gram 
or characters in text instead of the whole word. The embeddings 
were trained from scratch using only the dataset. Word 2Vec 
and Fastext models used gensim implementation to train their 
word embeddings by using both skip gram and Continuous bag 
of words (CBOW) approaches. CBOW is a type of architecture 
used in word2vec model which tries to predict a word given other 
words in context. Skip-gram on the other hand tries to predict the 
context given the target word. Even though methods like word 
2vec was used as feature representation to great success on many 
different tasks, the technique has its limitations, mainly with 
capturing the context of each word embedding.

The word 2vec and GloVe use the co-occurrences between a 
context word and a target word. Context-dependent embeddings 
uses whole sequences to capture the context of a target word to 
create embeddings. This method of selecting sequences instead 
of individual words to infer the context provides information 
about the sequential relationships of the words in a sequence, 
instead of just observing if they occur in the proximity of a 
target word. One example of these richer embeddings is context 
2vec18. Context 2vec builds upon the word 2vec architecture, 
and introduces bi-directional Long Short Term Memory (LSTM) 
networks19 to replace the context modelling of averaged word 
embeddings in a fixed window.

6. Deep Learning Approaches 
In machine learning techniques, documents are classified 

based on the past observations and the features are designed using 
handcrafted features or extracted using other ML techniques. 
These features are then trained in a supervised manner with a 
suitable ML algorithm. Support Vector Machine (SVM), Naive 
Bayes, Decision Tree are few examples of classifiers.

Traditionally, in any text classification problem huge amounts 
of resources are spent in understanding data, handcrafting features 
and most importantly generating embeddings. Embeddings are 
vector representation for text data. In cases where data is sparse, 
representation of text data will never achieve a satisfactory 
level. Recently many pre-trained language models were open 
sourced with the purpose of NLP research without expensive 
training pre-requisites. This was achieved by training models 
with a large corpus of data in an unsupervised manner. Different 
training techniques were employed for training the models but 
some popular techniques included predicting a word in the 
given sequence that followed that word. This helped model to 
understand the structure of the language and form a statistical 
basis for predicting the probability of a word to appear next. 
These Language Models are then fine-tuned by training them on 
specific tasks which has a definite goal.
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Lastly, an activation function used for the hidden layer is H. 
Tanh activation function is used in this work.

6.2. Long short-term memory (LSTM)

One of the complexities of NLP is that text may have future 
dependencies as well as past ones. Thus takes the form of the 
meaning of words being determined by context not yet expressed 
in a sentence. These problems are quite significant in NLP, as 
humans may read further into a sentence before comprehending 
the context of a word. Authors19 tried to solve many of the 
RNN’s problems with the Long Short-Term Memory (LSTM). 
They used gates in order to update the hidden states in a more 
efficient manner. LSTMs uses input, forget, cell and output 
gates. The purpose of the gates is to let the network learn when 
to update the hidden state, in effect adding a layer of de-noising 
in the hidden state, making it less likely to update the hidden 
state with non-important information. The model has been 
expanded by Authors25 with additional gates from the original 
ones. While these gates improve the vanishing and exploding 
gradient problems associated with regular RNNs, they do not 
completely solve them.

The basic RNN model however suffered from vanishing 
gradient23 problem arising out of continuous multiplication 
between matrices of weights and cost correction while back 
propagating. The longer these errors have to propagate in layers 
they show more tendencies to shrink leaving the model very 
small values to learn anything from. LSTM (Long Short Term 
Memory) solve this problem to great extent when a ‘forget gate’ 
was added to focus only on the important part of the sequences 
by creating a connection between activation function of forget 
gate and the computation of the gradients in the network. 
LSTM’s take longer to train and sometimes suffer from over-
fitting issues. They also have high computational cost and are 
sensitive to the type of parameter initialization techniques used.

Figure 3: Details out the LSTM Cell and its operations.

The Equation (3) computes the new information that is to be 
stored in input gate i.

[ ]( )1. ,t i t t ii W h x bσ −= +  (3)
 

The Equation (4) related to forget gate f which determines 
the information that is not important for the model to store.

[ ]( )1. ,t f t t ff W h x bσ −= +  (4)

The Equation (5) related to output gate o which provide 
activation to the final output of the LSTM block.

[ ]( )1. ,t o t t oo W h x bσ −= +  (5)

Every language model has their own final layer which can 
perform variety of NLP tasks such as text classification, Named 
Entity Recognition, Question Answering etc. In this work, we 
experimented with different deep learning techniques like RNN, 
LSTM, GRU and BERT.

6.1 Recurrent neural network (RNN)

Recurrent Neural Network (RNN)20 variants became quite 
common in most NLP researches due to its ability to capture 
long term dependency among sequences using its internal state 
memory. Recurrent Neural Networks (RNN) is an extension 
of Multi-Layer Perceptron (MLP). In NLP, the handling of 
sequences of data causes particular problems for the MLPs, as 
it has no way of storing the previous state in a sequence. This 
is equivalent of trying to understand a written sentence but 
forgetting each word when reading. Additionally, text is rarely 
normalised in length and cannot be split up easily while keeping 
the original information intact. Authors21 and22 solved this by 
feeding the previous hidden state in the network back to the 
current state. This allows the network to keep a form of internal 
memory of what has been seen previously in the sequence. This 
solves two problems such as model dependencies, handling 
different lengths of inputs. RNNs solved these and quickly 
became the popular standard for most forms of NLP using 
Neural Networks.

However, vanishing or “exploding” gradients23 makes 
RNNs difficult to train well. Additionally, these models have a 
tendency to become large, especially in NLP, and therefore take 
considerable computational resources to train. RNN‟s are widely 
used in applications such as text classification, image captioning 
and video summarization. The basic RNN takes input from the 
previous time step and current input to predict the next outcome. 
The weights are updated for each time step by back-propagation 
using the error calculated for that time step. RNNs do a great 
job at extracting features from temporal data but they sometimes 
face the problem of vanishing gradients. h0, h1, h2, h3,… ht are the 
inputs to the time steps t = 0, 1, 2, 3, …., t which are used along 
with x1, x2, x3, …., xt to predict the output y1, y2, y3, …., yt. 

Figure 2: Details out the high-level architecture of RNN.

The RNN output calculation is based on iteratively 
calculating the output by using the following equations (1) and 
(2). The equation (1) is used to compute the current hidden state 
output by using previous hidden state output and current input. 

( )1t hx t hh t hh H W x W h b−= + +  (1)

t hy t yy W h b= +  (2)

In Equations (1) and (2), 𝑥𝑡 is the input sequence at the 
current time slice t, 𝑦𝑡 is the output sequence at time slice t, and 
h represents the hidden vector sequence from time slice 1 to T. 
W and b represents weight matrices and biases respectively. 
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The Equation (6) is related to internal memory unit which is 
used to store the previous information.

[ ]( )1

~
tanh . ,t c t t cC W h x b−= +  (6)

The Equation (7) computes current hidden state output Ct 
by using the information from previous hidden state and current 
input.

1

~
t t t tCt f C i Cσ −

 
 = ∗ + ∗
 
 

 (7)

The Equation (8) computes final hidden state output by 
combining Ct and output gate. This hidden state is a vector 
representation of the data which is then further used for a variety 
of applications such as classification and captioning.

( )tanht t th o C= ∗  (8)

Where, the activation functions used are sigmoid function 
(𝜎) and hyperbolic tangent function (tan h), 𝑖𝑡, 𝑓𝑡, 𝑜𝑡, 𝐶𝑡, 𝐶�̃� 
represents the input gate, forget gate, output gate, memory 
cell content and new memory cell content, respectively. Three 
gates are made up of the sigmoid function, and the output of 
the particular cell is scaled up by using the hyperbolic tangent 
function. The sigmoid function outputs values between 0 and 1. 
The sigmoid function determines the percentage of information 
to be passed through the gate.

6.3 Gated recurrent unit (GRU)

GRU is another type of RNNs with memory cells. They 
are similar to LSTM but with simpler cell architecture. GRU 
also has gating mechanism to control the flow of information 
through cell state but has fewer parameters and does not contain 
an output gate. The GRU cell structure consists of two gates, r 
is a reset gate, and z an update gate. The reset gate regulates the 
flow of new input to the previous memory, and the update gate 
determines how much of the previous memory to keep. If we 
compare GRU with LSTM, the update gate is the combination 
of the input and forget gate and the previous hidden state is 
connected to the reset gate directly. Another difference is in the 
exposure of memory content. As GRUs do not have an output 
gate, it exposes all of its memory content, whereas in LSTM the 
memory content to be used or seen by other units/cells in the 
network is managed by the output gate26. 

Figure 4: Details out the GRU Cell and its operations.

The gating mechanism in both LSTM and GRU cells 
makes them the perfect choice for long-term dependencies. 
Both LSTM and GRU networks performed well and unable to 
conclude which one was better than other. GRU is less complex 

and computationally more efficient as compared to LSTM. The 
following Equations explain the mathematical working of GRU. 
Equation (9) specifies the Update gate zt which is computed by 
using the current input and the previous hidden state output.

[ ]( )1. ,t z t tz W h xσ −=  (9)

Equation (10) is related to reset gate which determines how 
much information about past information to forget. Both, update 
and reset gate use sigmoid functions to constrain the output 
between 0 and 1.

 [ ]( )1. ,t r t tr W h xσ −=  (10)

In equation (11), ĥt computes the current memory that is to 
be passed to final output.

[ ]( )
~

1tanh . ,t h t t th W r h x−= ∗  (11)

The equation (12) computes the final memory ht at the time 
step t.

( )
~

11t t t t th z h z h−= − ∗ + ∗  (12)

6.4 BERT 

The landscape of NLP changed with the advent of deep 
learning and achieved state-of-the-art results in many benchmark 
tasks. It allowed models to learn hidden patterns among the data 
and devised a technique to form representation of the text data. 
Sequential models like RNN suffered from high computational 
and time costs, CNN who are less sequential in nature suffered 
in performance when it came to long sentence length. Every 
next step depends on the output of the previous time step 
in sequential model which stalls training simultaneously. 
Transformer reduced the costs by parallelizing computation for 
every token in a sequence by employing attention mechanism. 
This allowed training of big models on high volume of corpus. 
Open GPT27 and its successor a transformer based model which 
could work on a wide variety of tasks such as text classification, 
textual entailment, question answering and semantic similarity 
assessment. While Open GPT was trained in a unidirectional 
model, BERT which came later was a bi-directional model 
and outperformed in most NLP benchmark tasks and achieved 
high rankings in General Language Understanding Evaluation 
(GLEU)28 score.

Many models provide end to end framework which include 
extracting features from data and downstream NLP tasks. With 
the development of such frameworks, transfer learning29 became 
popular where the learning of these pre-trained frameworks can 
be transferred onto other applications. This reduced the need 
for intensive training with high volume of data. With transfer 
learning pre-trained models could adapt to new dataset with fine-
tuning on relatively small data, which not only made possible for 
individual researchers to get good results but it also reduced the 
overall cost to generate embedding for these models.

To perform sequence to sequence tasks, the dominant method 
has some form of recurrent model like recurrent neural networks 
(RNNs). These methods have been relatively well-performing 
but suffer from some important drawbacks, where the most 
glaring is the lack of parallelization of the computational steps30. 
This flaw is due to the sequential nature of a recurring network, 
where the hidden state is not only dependent on the current 
input, but also all of the hidden states in the previous time steps. 
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To be able to calculate a new hidden state, all of the previous 
hidden states have to be calculated in a sequential manner. While 
this shortcoming exists for every type of input to the network, 
it is the most prevalent during long sequence lengths, when 
memory limitations often reduce the batching possibilities. 
Authors30 proposed the use of Transformer which is a solution 
to solve all the limitations. The Transformer builds upon the 
concept of attention which provides mechanisms to abandon 
recurrence altogether in combination with a network structure 
of encoders and decoders. This combination allows for better 
task performance and training times when compared to recurrent 
neural networks.

Deep neural networks (DNNs) have proven to be successful 
in many NLP tasks, for instance, word embedding extraction 
with word 2vec and language modelling31. One major limitation 
of a DNN is, however, that they require both the input and target 
vectors to be of fixed dimensionality. The limitations lead to 
problems on tasks where the length of the vectors is unknown, 
which often is the case due to the variability of natural language. 
One solution to this problem is to use encoders and decoders32. 
The encoder-decoder architecture introduces recurrent neural 
network (RNN) structures in the encoding layer to encode the 
input sentence to a vector of fixed length, pass it through the 
DNN, and subsequently decode it in the decoder layer. This 
allows the DNN always to be passed a vector of fixed length, 
regardless of the actual length of the input sequence.

Figure 5: Architecture of BERT and output selection.

The first building block of the encoder-decoder framework is 
the encoder layer. Multiple recurrent network structures, such as 
RNNs, gated recurrent units (GRU), or convolutional networks, 
may be implemented for this purpose. However, Authors33 
showed that multi-layered LSTMs are especially suited as 
encoders. This is a result of their ability to handle long sequences, 
unlike for example RNNs that have problems with exploding 
or vanishing gradients34. During run time, the encoder gets its 
input of a text represented as a sequence of vectors, x =(x1, . . . 
, xtx). From this sequence, a context vector, c is generated. This 
vector serves as contextualized representation of the whole input 
sequence. The context vector is described in the equation (13).

{ }( )1,......., xtc q h h=  (13)

The hidden state h, at time t is represented in equation (14).

( )1,t t th f x h −=  (14)

Where, q and f are recurrent functions, ht is dependant both 
on the current input xt and the former hidden state ht−1, while 
the context vector c contains all of the previous hidden states. 

After being processed by the encoder, the context vector will be 
passed to the decoder, where it will be used to decode an output 
sequence.

Like the encoder, the decoder can be implemented with 
many network types, but LSTMs is the most commonly used. 
The purpose of the decoder is to take the contextualized 
representation of an input sequence, and generate some output 
sequence from it. This generation is done sequentially for each 
word in the output sequence, until an EOS (end-of-sequence) 
token is produced. The decoding of a sequence is based on the 
sequence context vector, c, passed from the encoder, and all of 
the earlier decoder states for the current sequence. The hidden 
state h of the decoder at time t is expressed in equation (15).

( )1 1, ,t t th f h y c− −=  (15)

where yt−1 is the previous output token and c the context 
vector. The token y to output is inferred from a conditional 
distribution and it is represented in equation (16).

( ) ( )1 2 1 1| , ,..... , , ,t t t t tP y y y y c g h y c− − −=  (16)

Where, g is a softmax function providing probable output 
tokens given the current time step. A softmax function g will 
then deliver all the possible tokens as a probability distribution. 
One intuitive way to choose which token to output from this 
probability distribution is to use an argmax function and pick the 
token with the highest probability.

Pre-trained language representations, for example, the 
popular word2vec, has shown to be very useful for a wide array 
of NLP-tasks. Context2vec manages to capture the context of 
words, improving on the word2vec model. Authors35 did refine 
this approach even further; to capture the context of the words 
in a sequence, they used an architecture based on language 
models, named ELMo. ELMo showed much improved results 
compared to previous methods and is an important predecessor 
to BERT. Another critical step towards BERT is the Open AI 
GPT architecture36. Open AI GPT (Generative Pre-training 
Transformer) shares many similarities with ELMo (Embeddings 
from Language Models), and also incorporates the Transformer 
instead of recurrent structures.

The system that popularized context-dependent embeddings 
on a wider scale is ELMo (Embeddings from Language Models), 
developed by35. ELMo builds upon the TagLM architecture. 
TagLM implements a pre-trained recurrent language model 
(LM) in conjunction with a word embedding model to compute 
context embeddings of each word in an input sentence. The 
purpose of a language model is to predict the next word in a 
sequence, something that requires information about both the 
syntactic and semantic roles of words in context. TagLM takes 
this inherent information about the context of words in the 
language model to create a LM embedding for each word in 
the sequence, which is concatenated with the respective word 
embedding to create the context-dependent embeddings. This, 
in turn, is provided as input to the sequence tagging model in the 
TagLM architecture.

GPT (Generative Pre-training Transformer), developed at 
Open AI by36, refines the usage of language models for language 
representations, that showed to be effective in both TagLM and 
ELMo. However, instead of the recurrent methods to capture 
the context of words in these architectures, GPT builds on the 
attention mechanisms found in the Transformer. Additionally, 
GPT implements what37 refers to as a” fine-tuning approach” to 
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pre-trained language representation. The fine-tuning approach 
builds upon the Universal Language Model Fine-tuning 
(ULMFiT) method, proposed by38. ULMFiT successfully applied 
transfer learning on a pre-trained language model, allowing a 
general language model to be fine-tuned with domain-specific 
data, for a specific task. In other words, the pre-trained language 
model parameters are updated and changed to fit a specific 
downstream task.

The most known implementation of said transformer 
networks, namely BERT (Bidirectional Encoder Representations 
from Transformers) further improved upon the results of 
the earlier mentioned architectures. It was subsequently 
implemented as a part of the Google search engine, with an 
estimated improvement of the search queries by around 10%39. 
BERT pre-trains a language model with a technique using 
bi-directional transformers, which means that the BERT model 
can capture the context of words in all directions, in all layers, 
resulting in what37 call deep bidirectional representations. The 
BERT model can also be fine-tuned for several downstream 
tasks, in the same manner as GPT.

7. Experimental Results
In this work, the experiment conducted with various deep 

learning techniques like RNN, LSTM, GRU and BERT for 
suggestion mining. The machine learning techniques used 
the feature vectors to generate the classification model. We 
observed that it was difficult to identify the suitable features that 
differentiate the sentences into suggestion or non-suggestion 
sentences. The deep learning techniques automatically extract 
the features which are suitable for classifying the sentences 
into suggestion sentence or not. The word embeddings play 
an important role in the process of deep learning classification 
process. In this work, word 2vec word embedding technique is 
used to generate the word vectors. The hyper parameters used 
in the deep learning models show a great difference in the 
accuracies of classification.

In this work, the deep learning models used different types of 
hyper parameters such as activation function = sigma and tanh 
function, epochs count = 10, dropout rate = 30%, neurons count 
in hidden layer = 1000, back-propagation technique = ADAM 
optimizer, Embedding Vector Size = 300, hidden layers count 
= 3, learning rate = 0.001, maximum sequence length = 1000, 
transformer layers = 24, self-attention heads = 20, hidden vector 
size = 768. The accuracies of suggestion mining are displayed 
in Table 2.

Table 2: The accuracies of deep learning techniques for 
suggestion mining.

Deep learning Technique Accuracy

RNN 82.71

LSTM 84.37

GRU 84.65

BERT 87.29

The Table 2 shows the accuracies of suggestion mining 
when experimented with different deep learning techniques 
such as RNN, LSTM, GRU and BERT. The BERT technique 
attained good accuracy of 87.29 for suggestion mining. It was 
observed that the BERT performance is good when compared 
with other deep learning techniques like RNN, LSTM and GRU. 
The LSTM and GRU show equal performance for suggestion 
mining. 

8. Conclusion and Future Scope
In recent times, people are using internet for communication 

and sharing their opinions on products, services, places, people etc. 
The people opinions and experiences are more helpful to others 
to know about different types of entities. Sentiment analysis is 
one research are which extracts the positive, negative or neutral 
sentiment on the entities from textual reviews. Suggestion mining 
is one type of sentiment analysis which extracts the suggestions, 
wishes, tips or recommendation sentences in the text which are 
helpful for the companies to improve the quality of their entities. 
The researchers proposed various solutions to suggestion mining 
based on machine learning and deep learning techniques. In this 
work, the experiment conducted with different deep learning 
techniques like RNN, LSTM, GRU and BERT. The BERT 
technique shows good accuracy of 87.29% when compared with 
other techniques.

In future work, we are planning to increase the size of 
pre-trained vectors as well as increase the size of the training 
dataset. We are also planning to implement imbalance techniques 
to solve the problems in imbalance in training dataset. 
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