
A BERT based Deep Learning Approach for Suggestion Mining

Siva Prasad Patnayakuni1*and Naga Shiva Harish Yedidi2

1Senior Data Engineer, H-E-B, USA
2Gayatri Vidya Parishad College of Engineering (Autonomous), Visakhapatnam, Andhra Pradesh, India

Citation: Patnayakuni SP, Yedidi NSH. A BERT based Deep Learning Approach for Suggestion Mining. J Artif Intell Mach Learn
& Data Sci 2024, 1(4), 19-27. DOI: doi.org/10.51219/JAIMLD/siva-prasad-patnayakuni/21

Received: 17 February, 2024; Accepted: 22 February, 2024; Published: 02 March, 2024

*Corresponding author: Siva Prasad Patnayakun, Senior Data Engineer, H-E-B, USA, E-mail: sivaprasad.patnayakuni@gmail.
com

Copyright: © 2024 Patnayakuni SP, et al., This is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author
and source are credited.

1

 A B S T R A C T

The textual information is uploaded tremendously in the internet with different forms of social network platforms like
Twitter, Facebook, Blogs, Forums and Review Sites. Most of the customers depend on opinions of consumers to purchase any
item or visiting any place. Sentiment analysis is one such research area to extract the opinions like positive, negative or neutral
of consumers on a particular product or service by analysing their reviews. The reviewers also specify suggestions to companies
or organizations to improve their quality of product or service. Suggestion mining is one type of sentiment analysis which
is used to extract suggestions like tips, wishes and recommendations from the text by analysing their text. The researchers
proposed different types of methods like rule based, feature based, machine learning based and deep learning based approaches
for suggestion mining. In machine learning based approaches, it is difficult to represent the text by considering syntactic and
semantic information of text. In this work, a Deep Learning based approach is proposed for suggestion mining to identify
whether a sentence is a suggestion or non-suggestion. The SemEval 2019 Competition subtask-A suggestion mining dataset is
used in this experiment. The word2vec and GloVe methods are used for generating word embeddings. Different deep learning
techniques such as Recurrent Neural Networks, Long Short Term Memory, Gated Recurrent Unit and BERT models are used in
this experimentation. The BERT model attained best accuracy for suggestion mining when compared with other deep learning
techniques.

Keywords: BERT, RNN, LSTM, GRU, Suggestion Mining

Research ArticleVol: 1 & Iss: 4

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/siva-prasad-patnayakuni/21

1 Introduction
The rapid expansion of the internet has established a

main way for humans to exchange information and ideas.
Even though millions of hours of video and audio clips get
uploaded and streamed online each day, written text is still
the dominant medium of this information exchange. The texts
generated by Review-based portals and online forums contain
different types of opinions like positive, negative or neutral on
products or services which is the subject of sentiment analysis.
The information extracted from these sources offer valuable
information to the customers about products and services.
On the other hand, the users also specify different types of

suggestions to the companies to improve their quality of product
or service. Unlike opinions, suggestions can appear in different
parts of text and also appear more sparsely. Suggestion mining
or identification of suggestions within the text is a relatively
new area which is gaining popularity among many private and
public sector organizations, service providers and consumers/
customers at large due to its number of uses.

Suggestion mining is defined as the extraction of suggestions
from unstructured text, where the term ‘suggestions’ refers
to the expressions of tips, advice, recommendations etc. We
often see comments on products in product forums which are
recommended or not recommended, and some users will consider

doi.org/10.51219/JAIMLD/siva-prasad-patnayakuni/21
https://urfpublishers.com/journal/artificial-intelligence
doi.org/10.51219/JAIMLD/siva-prasad-patnayakuni/21

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 4Patnayakuni SP, et al.,

2

The traditional approach to any text classification problem is
by extracting features from the dataset or by encoding numeric
vectors to represent the text. When using a text classifier, one
of the simplest ways to represent text is to use bag-of-words
(BOW), where each word (feature) in the text is stored together
with their relative frequency and ignoring word position. It also
requires huge corpus of labelled data to have good representation
of the data. A more advanced way to represent features is by
using word embeddings, where each feature is mapped to a
vector of numbers also called as embedding. One popular way to
create these word embeddings is to use word 2vec6. Word 2vec
can capture the semantic meaning of words, providing more
competent feature representations than the previously mentioned
BOW approach. The embeddings from word2vec work relatively
well, but are still missing an essential aspect of natural language
context. In this work, we present a deep learning based approach
for suggestion mining that will eliminate the steps required to
manually extract features by leveraging pre-trained embeddings
generated using BERT to form contextual representation of the
textual statements that preserves the semantics and syntax of the
language. The experiment conducted with RNN, LSTM, GRU
and BERT techniques on the dataset provided in Sem Eval 2019
competition task A.

This work is structured in 8 sections. The existing works of
suggestion mining is analysed in Section 2. The description about
dataset is presented in Section 3. The proposed deep learning
based approach for suggestion mining is presented in Section
4. The word embeddings are explained in Section 5. The deep
learning techniques are described in Section 6. The experimental
results are expressed in Section 7. The conclusions and future
directions of our work mentioned in Section 8.

2. Related Work
Suggestion mining is defined as the extraction of suggestions

from unstructured text7. Suggestion mining is still a relatively
young research area as compared to other natural language
processing issues like sentiment analysis3. While suggestion
mining is of great commercial value for organizations to
improve the quality of their entities by considering the positive
and negative opinions collected from platforms. The target of
this task is to automatically classify the sentences collected from
online reviews and forums into two classes which are suggestion
and non-suggestion8.

Authors9 presented a system for Suggestion Mining task. The
proposed system employed ensemble of Domain-Adversarial
Neural Networks (DANN) by using Structured Self-Attentive
Sentence Embedding as a feature extractor. The part-of-speech
tagging is used to achieve better adaptation towards target domain
and the DANN extended with a Target Preserving component
in a form of words decoder for target domain sentences. The
proposed system reached F1 score up to 0.778 on test dataset.
They achieved 7th rank in this subtask B.

Authors10 described a system based on directed un-weighted
graphs for Suggestion Mining Sub Task A of Sem Eval 2019.
During the evaluation, the proposed system got 31st rank in the
competition subtask A dataset. They discussed the results of a
system in the development, evaluation and post evaluation. In
this system, each class in the dataset is represented as directed
unweighted graphs. Then, the comparison is carried out with
each class graph which results in a vector. This vector is used as
features by a machine learning algorithm. The model is evaluated

whether to purchase the product based on these comments.
Suggestion mining is also defined as automatic extraction of
recommendations from a given text. These texts that express
user suggestions can usually be found in social media platforms,
blogs, or product online forums. Suggestion mining is a trending
research domain in recent times to enhance the product or
service quality. To better recognize suggestions, instead of only
matching feature words, one must have the ability to understand
long and complex sentences.

Sentiment analysis is a process of computationally identifying
and categorizing the opinions from unstructured data. This can
be used to identify a user’s perspective of a product like positive,
negative or neutral. Opinion mining is used to identify whether
the product is a success in the market or not. Suggestion mining
finds out ways to enhance the product to satisfy the customers.
Review texts are mainly used to identify the sentiments of the
user. Besides sentiments, review texts also contain valuable
information such as advice, recommendations, tips and
suggestions on a variety of points of interest. These suggestions
will help other customers to make their choices and the sellers
improve their products. Suggestion mining is relatively a young
field of research compared to sentiment analysis. While mining
for suggestions, the propositional aspects like mood, modality,
sarcasm, and compound statements have to be considered. It
is observed that, in some cases, grammatical properties of the
sentence alone can be used to identify the label, while in other
cases semantics play a significant role in label classification1.

Several applications such as Customer to customer
suggestions, Enhancement of sentiment detection, product
improvement, Recommender systems and Suggestion
summarization used the techniques of suggestion mining2. The
customers are giving suggestions like warnings, tips and advice
about different commercial entities in blogs, reviews and other
social media platforms. Suggestions are mined mainly for
business people to improve the product or for fellow customers
to detect advice. These suggestions are helpful for the other
customers before selecting any entity. The sentiment analysis
extracts opinions like positive, negative or neutral opinion on
entities from the text. The sentiment analysis is poor in detection
of irrelevant and neutral sentiment in the sentences. In this
aspect, the suggestions are helpful for the experts of sentiment
analysis to improve the detection of sentiment in the text.
The suggestions of consumers about a product are helpful for
the product developers, owners and implementers to enhance
their product quality. The recommender systems recommend
the products based on the opinions of the consumers on the
product. The suggestion mining system improves the behaviour
of recommender systems by adding additional information of
suggestions to recommend the better products. The opinionated
text contains different opinions on different entities. The
suggestion mining techniques are used to summarize the
different opinions on a product.

Unlike opinions, suggestions can be more likely extracted
also by pattern matching. Some researchers extracted suggestions
by using different heuristic features and keywords such as
suggest, recommend, advise3. Some works deal with domain
terminology, thesaurus, linguistic parser and extraction rules4.
Linguistic rules were also used for identification and extraction
of suggestions in sentiment expressions5. Suggestion mining can
be realized as standard text classification and classified into two
classes such as suggestion and non-suggestion.

3

Patnayakuni SP, et al., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 4

on hold on strategy. The binary class system achieved evaluation
value of 0.35. Authors11 proposed an approach by using expert
defined rules and compared with machine learning models.
They observed that the expert rules achieved best performance
when compared with machine learning model. For the machine
learning approach, they tried with wide spread of feature types
such as character n-grams, token unigrams, token n-grams,
syntactic structure of the main clause, syntactic rewrites of all
constituents and syntactic n-grams.

Authors12 discusses the rule-based method to find out the
suggestions from the reviews. They have identified two kinds of
‘wishes’ namely the desire to improve the product and the desire
to purchase the product. They have formulated the rules using
modal verbs and certain sentence patterns. Authors13 develop
an ontology-based knowledge representation for suggestion
mining.

Authors14 proposed a suggestion mining system for the task A
and B in SemEval-2019. This system used linguistic rule-based
method for feature extraction, SMOTE sampling technique is
used for data augmentation to solve the imbalance problem in
the dataset and deep learning technique (Convolutional Neural
Network (CNN)) for classification. The Bag of Words (BOW)
features are used in MLP, RF and CNN classifier for suggestion
mining. The results of CNN are compared with Random Forest
classifier (RF) and Multi-Layer Perceptron (MLP) model.
They found that the performance of CNN model is good when
compared to MLP and RF classifiers for both the subtasks.

Authors15 presented a study about different classification
algorithms like Random Forest (RF), Logistic Regression (LR),
Sublinear Support Vector Classification (SSVC), Multinomial
Naive Bayes (MNB), Linear Support Vector Classification
(LSVC), CNN and Variable Length Chromosome Genetic
Algorithm-Naive Bayes (VLCGA-NB). The developed system
attained F1-scores of 0.37 and 0.47 on evaluation data of task
B and task A respectively. They find that the results of this
system outperformed the base line results of suggestion mining.
The MNB achieved best F1-score for non-suggestion class and
SSVC attained best F1-score for Suggestion class.

Authors16 built a domain-independent suggestion mining
model to classify suggestion sentences by developing a hybrid
approach which uses rule-based features along with RNN. The
proposed model obtained a F1-score of 74.49% for suggestion
mining which is higher than baseline accuracy of 57.77%.
Ilia Markov et al., experimented [P46] with different types
of handcrafted features, digits, sentiment features, verbs and
function words for subtask A and handcrafted features for
subtask-B. They used handcrafted keywords of 57 for subtask-A
and keywords of 77 for subtask-B. The Support Vector Machines
(SVM) classifier is used for training purpose. Term frequency
measure is used to determine the feature value in the vector
representation. The proposed system attained F1-scores of 51.18
and 73.30 for task A and B respectively.

3. Description of Dataset
“Task 9 - Suggestion mining from online reviews and forums”

is introduced in Sem Eval 2019 competition which has two
subtasks8. Subtask A is to classify a sentence into a suggestion or
a non-suggestion. Subtask B is a cross-domain testing in which
the model learned from a domain-specific dataset and this model
is used to classify dataset from a new domain. For subtask-A,
suggestion forum dataset is used for training and testing. For

subtask-B, suggestion forum dataset is used for training and
hotel review dataset is used for testing purposes. The suggestion
forum training dataset has 2085 instances of suggestion class
and 6415 instances of non-suggestion class. The trial test set for
suggestion forum dataset has equal number of instances (296)
for both classes. In this work, subtask A dataset is considered
for experiment. The dataset for suggestion mining task consists
of feedback posts on Universal Windows Platform available
on uservoice.com. The training and development sentences
are combined in the final dataset. The final dataset divided into
70% data for training and 30% of data for testing. The dataset
description is expressed in Table 1.

Table 1: Description about dataset for subtask A.
Training Development Test

Suggestions Sentences 2085 296 87
Non Suggestions Sentences 6415 296 746
All 8500 592 833

The researchers presented their results with different
performance metrics like recall, precision, accuracy, F1-Score.
In this work, accuracy metric is used for testing the suggestion
mining performance. Accuracy is number of test sentences
predicted their suggestion correctly from total sentences. In this
work, different pre-processing techniques are applied on the
dataset to remove irrelevant data. The pre-processing of input
samples is one of the most important phases in natural language
processing. For user generated content, pre-processing is even
more important due to noisy and ungrammatical text. For this
suggestion mining task, we used different pre-processing
techniques such as removal of non-alphabetic characters,
expanding the contraction words, lowercase conversion and
removal of punctuation characters.

4. Proposed Deep Learning based Approach for
Suggestion Mining

In this work, deep learning based approach is proposed for
suggestion mining. The proposed approach is displayed in Fig.
1.

Figure 1: The deep learning based approach for suggestion
mining.

In this approach, different pre-processing techniques are
applied on the dataset to prepare the dataset for extracting
suitable words. After cleaning the dataset, extract the words.

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 4Patnayakuni SP, et al.,

4

The Word2Vec and GloVe methods are used to generate the
word embeddings. The word embeddings are given as input to
different deep learning techniques such as RNN, LSTM, GRU
and BERT. The deep learning techniques predict the accuracy
of suggestion mining. The next sections explain the word
embedding techniques and deep learning techniques.

5. Word Embeddings
 One of the most basic approaches for representing the text

is a Bag-Of-Words (BOW) model, where each word in the text
gets transformed into a vector and mapped with another vector
consisting of the corresponding word counts. This is simple
and quite effective procedure in many cases, but it comes with
some issues. One of the main ones is that a BOW representation
disregards the position of individual words in a text. Natural
language is heavily context dependant and removing a word from
its context changes its semantic meaning completely. Another
problem is the sparse encoding of the vectors that makes them
sub-optimal for machine learning algorithms17.

An alternative approach to BOW is to use a vector semantics
method, where each word is represented in a multidimensional
semantic space. This method assumes that words which are
frequently co-occurring also share some semantic meaning.
These co-occurring words are modelled as vectors also referred
to as embeddings. A semantic similarity measure is obtained by
calculating the dot product of two embeddings which indicates
how close they are to each other in the semantic space and
how similar the words represented by the embeddings are. The
embeddings are based on a term-term matrix17. This means
that each word has its own row in the matrix with columns
corresponding to all the words in the vocabulary. Each cell
indicates how often the word in the row co-occurs with the
word in the column. These rows are constitutes the embeddings.
However, due to how natural language is structured, each word
in the vocabulary will only co-occur with a small subset of the
total number of words. As a consequence, most of the cells in the
matrix are going to be empty which means that a large portion
of each embedding will be filled with zeros. This is often called
sparse vector representations.

The sparse vectors are often replaced by dense vectors. The
dense vectors offer some advantages over the sparse vectors,
where the most prominent one is that their fewer dimensions is a
better fit for feature representation in machine learning systems.
A system that uses shorter, more dense vectors, have to learn
substantially fewer weights than a system using sparse vectors.
This has a significant impact on the training times of the system.
Also, due to the reduced number of weights, a system with dense
vectors is less susceptible to over-fitting problems17. All machine
learning techniques require representation of text in numerical
format so that it can be consumed by the neural networks. The
representation of the words is learned by training models with
enormous text data. The model tries to form representation of
the word by taking into account the words adjacent to it. Words
which are similar to each other will have their positions nearby
to each other in vector space and vice versa for dissimilar words.

A Numerical representation which can capture syntactic
and semantics of the language is the most effective way of a
good embedding method. Traditionally researchers have spent
a lot of time in formulating embeddings for a particular dataset
before even moving to the actual task. Modern word embedding
techniques reduces the number of dimensions from thousands to

few hundreds. One of the important parameter in word embedding
is deciding the number of dimension for representation which
is best figured out empirically. Higher number of dimensions
might bring better accuracy sometimes but it also brings in extra
computational cost. A right balance needs to be figured out and is
generally dependent on the dataset and the problem which needs
to be solved. To generate dense vector representation of words,
Word2vec needs a local context window parameter to define the
number of words to consider while training embeddings.

Several researchers used word2vec and fastext for
representing text data into vector format. Word2Vec used neural
network to form representation of words by learning their
associations with other words from large corpus of text. Fastext
is an extension to word 2vec which learns embeddings of n-gram
or characters in text instead of the whole word. The embeddings
were trained from scratch using only the dataset. Word 2Vec
and Fastext models used gensim implementation to train their
word embeddings by using both skip gram and Continuous bag
of words (CBOW) approaches. CBOW is a type of architecture
used in word2vec model which tries to predict a word given other
words in context. Skip-gram on the other hand tries to predict the
context given the target word. Even though methods like word
2vec was used as feature representation to great success on many
different tasks, the technique has its limitations, mainly with
capturing the context of each word embedding.

The word 2vec and GloVe use the co-occurrences between a
context word and a target word. Context-dependent embeddings
uses whole sequences to capture the context of a target word to
create embeddings. This method of selecting sequences instead
of individual words to infer the context provides information
about the sequential relationships of the words in a sequence,
instead of just observing if they occur in the proximity of a
target word. One example of these richer embeddings is context
2vec18. Context 2vec builds upon the word 2vec architecture,
and introduces bi-directional Long Short Term Memory (LSTM)
networks19 to replace the context modelling of averaged word
embeddings in a fixed window.

6. Deep Learning Approaches
In machine learning techniques, documents are classified

based on the past observations and the features are designed using
handcrafted features or extracted using other ML techniques.
These features are then trained in a supervised manner with a
suitable ML algorithm. Support Vector Machine (SVM), Naive
Bayes, Decision Tree are few examples of classifiers.

Traditionally, in any text classification problem huge amounts
of resources are spent in understanding data, handcrafting features
and most importantly generating embeddings. Embeddings are
vector representation for text data. In cases where data is sparse,
representation of text data will never achieve a satisfactory
level. Recently many pre-trained language models were open
sourced with the purpose of NLP research without expensive
training pre-requisites. This was achieved by training models
with a large corpus of data in an unsupervised manner. Different
training techniques were employed for training the models but
some popular techniques included predicting a word in the
given sequence that followed that word. This helped model to
understand the structure of the language and form a statistical
basis for predicting the probability of a word to appear next.
These Language Models are then fine-tuned by training them on
specific tasks which has a definite goal.

5

Patnayakuni SP, et al., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 4

Lastly, an activation function used for the hidden layer is H.
Tanh activation function is used in this work.

6.2. Long short-term memory (LSTM)

One of the complexities of NLP is that text may have future
dependencies as well as past ones. Thus takes the form of the
meaning of words being determined by context not yet expressed
in a sentence. These problems are quite significant in NLP, as
humans may read further into a sentence before comprehending
the context of a word. Authors19 tried to solve many of the
RNN’s problems with the Long Short-Term Memory (LSTM).
They used gates in order to update the hidden states in a more
efficient manner. LSTMs uses input, forget, cell and output
gates. The purpose of the gates is to let the network learn when
to update the hidden state, in effect adding a layer of de-noising
in the hidden state, making it less likely to update the hidden
state with non-important information. The model has been
expanded by Authors25 with additional gates from the original
ones. While these gates improve the vanishing and exploding
gradient problems associated with regular RNNs, they do not
completely solve them.

The basic RNN model however suffered from vanishing
gradient23 problem arising out of continuous multiplication
between matrices of weights and cost correction while back
propagating. The longer these errors have to propagate in layers
they show more tendencies to shrink leaving the model very
small values to learn anything from. LSTM (Long Short Term
Memory) solve this problem to great extent when a ‘forget gate’
was added to focus only on the important part of the sequences
by creating a connection between activation function of forget
gate and the computation of the gradients in the network.
LSTM’s take longer to train and sometimes suffer from over-
fitting issues. They also have high computational cost and are
sensitive to the type of parameter initialization techniques used.

Figure 3: Details out the LSTM Cell and its operations.

The Equation (3) computes the new information that is to be
stored in input gate i.

[]()1. ,t i t t ii W h x bσ −= + (3)

The Equation (4) related to forget gate f which determines
the information that is not important for the model to store.

[]()1. ,t f t t ff W h x bσ −= + (4)

The Equation (5) related to output gate o which provide
activation to the final output of the LSTM block.

[]()1. ,t o t t oo W h x bσ −= + (5)

Every language model has their own final layer which can
perform variety of NLP tasks such as text classification, Named
Entity Recognition, Question Answering etc. In this work, we
experimented with different deep learning techniques like RNN,
LSTM, GRU and BERT.

6.1 Recurrent neural network (RNN)

Recurrent Neural Network (RNN)20 variants became quite
common in most NLP researches due to its ability to capture
long term dependency among sequences using its internal state
memory. Recurrent Neural Networks (RNN) is an extension
of Multi-Layer Perceptron (MLP). In NLP, the handling of
sequences of data causes particular problems for the MLPs, as
it has no way of storing the previous state in a sequence. This
is equivalent of trying to understand a written sentence but
forgetting each word when reading. Additionally, text is rarely
normalised in length and cannot be split up easily while keeping
the original information intact. Authors21 and22 solved this by
feeding the previous hidden state in the network back to the
current state. This allows the network to keep a form of internal
memory of what has been seen previously in the sequence. This
solves two problems such as model dependencies, handling
different lengths of inputs. RNNs solved these and quickly
became the popular standard for most forms of NLP using
Neural Networks.

However, vanishing or “exploding” gradients23 makes
RNNs difficult to train well. Additionally, these models have a
tendency to become large, especially in NLP, and therefore take
considerable computational resources to train. RNN‟s are widely
used in applications such as text classification, image captioning
and video summarization. The basic RNN takes input from the
previous time step and current input to predict the next outcome.
The weights are updated for each time step by back-propagation
using the error calculated for that time step. RNNs do a great
job at extracting features from temporal data but they sometimes
face the problem of vanishing gradients. h0, h1, h2, h3,… ht are the
inputs to the time steps t = 0, 1, 2, 3, …., t which are used along
with x1, x2, x3, …., xt to predict the output y1, y2, y3, …., yt.

Figure 2: Details out the high-level architecture of RNN.

The RNN output calculation is based on iteratively
calculating the output by using the following equations (1) and
(2). The equation (1) is used to compute the current hidden state
output by using previous hidden state output and current input.

()1t hx t hh t hh H W x W h b−= + + (1)

t hy t yy W h b= + (2)

In Equations (1) and (2), 𝑥𝑡 is the input sequence at the
current time slice t, 𝑦𝑡 is the output sequence at time slice t, and
h represents the hidden vector sequence from time slice 1 to T.
W and b represents weight matrices and biases respectively.

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 4Patnayakuni SP, et al.,

6

The Equation (6) is related to internal memory unit which is
used to store the previous information.

[]()1

~
tanh . ,t c t t cC W h x b−= + (6)

The Equation (7) computes current hidden state output Ct
by using the information from previous hidden state and current
input.

1

~
t t t tCt f C i Cσ −

 = ∗ + ∗

 (7)

The Equation (8) computes final hidden state output by
combining Ct and output gate. This hidden state is a vector
representation of the data which is then further used for a variety
of applications such as classification and captioning.

()tanht t th o C= ∗ (8)

Where, the activation functions used are sigmoid function
(𝜎) and hyperbolic tangent function (tan h), 𝑖𝑡, 𝑓𝑡, 𝑜𝑡, 𝐶𝑡, 𝐶�̃�
represents the input gate, forget gate, output gate, memory
cell content and new memory cell content, respectively. Three
gates are made up of the sigmoid function, and the output of
the particular cell is scaled up by using the hyperbolic tangent
function. The sigmoid function outputs values between 0 and 1.
The sigmoid function determines the percentage of information
to be passed through the gate.

6.3 Gated recurrent unit (GRU)

GRU is another type of RNNs with memory cells. They
are similar to LSTM but with simpler cell architecture. GRU
also has gating mechanism to control the flow of information
through cell state but has fewer parameters and does not contain
an output gate. The GRU cell structure consists of two gates, r
is a reset gate, and z an update gate. The reset gate regulates the
flow of new input to the previous memory, and the update gate
determines how much of the previous memory to keep. If we
compare GRU with LSTM, the update gate is the combination
of the input and forget gate and the previous hidden state is
connected to the reset gate directly. Another difference is in the
exposure of memory content. As GRUs do not have an output
gate, it exposes all of its memory content, whereas in LSTM the
memory content to be used or seen by other units/cells in the
network is managed by the output gate26.

Figure 4: Details out the GRU Cell and its operations.

The gating mechanism in both LSTM and GRU cells
makes them the perfect choice for long-term dependencies.
Both LSTM and GRU networks performed well and unable to
conclude which one was better than other. GRU is less complex

and computationally more efficient as compared to LSTM. The
following Equations explain the mathematical working of GRU.
Equation (9) specifies the Update gate zt which is computed by
using the current input and the previous hidden state output.

[]()1. ,t z t tz W h xσ −= (9)

Equation (10) is related to reset gate which determines how
much information about past information to forget. Both, update
and reset gate use sigmoid functions to constrain the output
between 0 and 1.

 []()1. ,t r t tr W h xσ −= (10)

In equation (11), ĥt computes the current memory that is to
be passed to final output.

[]()
~

1tanh . ,t h t t th W r h x−= ∗ (11)

The equation (12) computes the final memory ht at the time
step t.

()
~

11t t t t th z h z h−= − ∗ + ∗ (12)

6.4 BERT

The landscape of NLP changed with the advent of deep
learning and achieved state-of-the-art results in many benchmark
tasks. It allowed models to learn hidden patterns among the data
and devised a technique to form representation of the text data.
Sequential models like RNN suffered from high computational
and time costs, CNN who are less sequential in nature suffered
in performance when it came to long sentence length. Every
next step depends on the output of the previous time step
in sequential model which stalls training simultaneously.
Transformer reduced the costs by parallelizing computation for
every token in a sequence by employing attention mechanism.
This allowed training of big models on high volume of corpus.
Open GPT27 and its successor a transformer based model which
could work on a wide variety of tasks such as text classification,
textual entailment, question answering and semantic similarity
assessment. While Open GPT was trained in a unidirectional
model, BERT which came later was a bi-directional model
and outperformed in most NLP benchmark tasks and achieved
high rankings in General Language Understanding Evaluation
(GLEU)28 score.

Many models provide end to end framework which include
extracting features from data and downstream NLP tasks. With
the development of such frameworks, transfer learning29 became
popular where the learning of these pre-trained frameworks can
be transferred onto other applications. This reduced the need
for intensive training with high volume of data. With transfer
learning pre-trained models could adapt to new dataset with fine-
tuning on relatively small data, which not only made possible for
individual researchers to get good results but it also reduced the
overall cost to generate embedding for these models.

To perform sequence to sequence tasks, the dominant method
has some form of recurrent model like recurrent neural networks
(RNNs). These methods have been relatively well-performing
but suffer from some important drawbacks, where the most
glaring is the lack of parallelization of the computational steps30.
This flaw is due to the sequential nature of a recurring network,
where the hidden state is not only dependent on the current
input, but also all of the hidden states in the previous time steps.

7

Patnayakuni SP, et al., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 4

To be able to calculate a new hidden state, all of the previous
hidden states have to be calculated in a sequential manner. While
this shortcoming exists for every type of input to the network,
it is the most prevalent during long sequence lengths, when
memory limitations often reduce the batching possibilities.
Authors30 proposed the use of Transformer which is a solution
to solve all the limitations. The Transformer builds upon the
concept of attention which provides mechanisms to abandon
recurrence altogether in combination with a network structure
of encoders and decoders. This combination allows for better
task performance and training times when compared to recurrent
neural networks.

Deep neural networks (DNNs) have proven to be successful
in many NLP tasks, for instance, word embedding extraction
with word 2vec and language modelling31. One major limitation
of a DNN is, however, that they require both the input and target
vectors to be of fixed dimensionality. The limitations lead to
problems on tasks where the length of the vectors is unknown,
which often is the case due to the variability of natural language.
One solution to this problem is to use encoders and decoders32.
The encoder-decoder architecture introduces recurrent neural
network (RNN) structures in the encoding layer to encode the
input sentence to a vector of fixed length, pass it through the
DNN, and subsequently decode it in the decoder layer. This
allows the DNN always to be passed a vector of fixed length,
regardless of the actual length of the input sequence.

Figure 5: Architecture of BERT and output selection.

The first building block of the encoder-decoder framework is
the encoder layer. Multiple recurrent network structures, such as
RNNs, gated recurrent units (GRU), or convolutional networks,
may be implemented for this purpose. However, Authors33
showed that multi-layered LSTMs are especially suited as
encoders. This is a result of their ability to handle long sequences,
unlike for example RNNs that have problems with exploding
or vanishing gradients34. During run time, the encoder gets its
input of a text represented as a sequence of vectors, x =(x1, . . .
, xtx). From this sequence, a context vector, c is generated. This
vector serves as contextualized representation of the whole input
sequence. The context vector is described in the equation (13).

{ }()1,......., xtc q h h= (13)

The hidden state h, at time t is represented in equation (14).

()1,t t th f x h −= (14)

Where, q and f are recurrent functions, ht is dependant both
on the current input xt and the former hidden state ht−1, while
the context vector c contains all of the previous hidden states.

After being processed by the encoder, the context vector will be
passed to the decoder, where it will be used to decode an output
sequence.

Like the encoder, the decoder can be implemented with
many network types, but LSTMs is the most commonly used.
The purpose of the decoder is to take the contextualized
representation of an input sequence, and generate some output
sequence from it. This generation is done sequentially for each
word in the output sequence, until an EOS (end-of-sequence)
token is produced. The decoding of a sequence is based on the
sequence context vector, c, passed from the encoder, and all of
the earlier decoder states for the current sequence. The hidden
state h of the decoder at time t is expressed in equation (15).

()1 1, ,t t th f h y c− −= (15)

where yt−1 is the previous output token and c the context
vector. The token y to output is inferred from a conditional
distribution and it is represented in equation (16).

() ()1 2 1 1| , ,..... , , ,t t t t tP y y y y c g h y c− − −= (16)

Where, g is a softmax function providing probable output
tokens given the current time step. A softmax function g will
then deliver all the possible tokens as a probability distribution.
One intuitive way to choose which token to output from this
probability distribution is to use an argmax function and pick the
token with the highest probability.

Pre-trained language representations, for example, the
popular word2vec, has shown to be very useful for a wide array
of NLP-tasks. Context2vec manages to capture the context of
words, improving on the word2vec model. Authors35 did refine
this approach even further; to capture the context of the words
in a sequence, they used an architecture based on language
models, named ELMo. ELMo showed much improved results
compared to previous methods and is an important predecessor
to BERT. Another critical step towards BERT is the Open AI
GPT architecture36. Open AI GPT (Generative Pre-training
Transformer) shares many similarities with ELMo (Embeddings
from Language Models), and also incorporates the Transformer
instead of recurrent structures.

The system that popularized context-dependent embeddings
on a wider scale is ELMo (Embeddings from Language Models),
developed by35. ELMo builds upon the TagLM architecture.
TagLM implements a pre-trained recurrent language model
(LM) in conjunction with a word embedding model to compute
context embeddings of each word in an input sentence. The
purpose of a language model is to predict the next word in a
sequence, something that requires information about both the
syntactic and semantic roles of words in context. TagLM takes
this inherent information about the context of words in the
language model to create a LM embedding for each word in
the sequence, which is concatenated with the respective word
embedding to create the context-dependent embeddings. This,
in turn, is provided as input to the sequence tagging model in the
TagLM architecture.

GPT (Generative Pre-training Transformer), developed at
Open AI by36, refines the usage of language models for language
representations, that showed to be effective in both TagLM and
ELMo. However, instead of the recurrent methods to capture
the context of words in these architectures, GPT builds on the
attention mechanisms found in the Transformer. Additionally,
GPT implements what37 refers to as a” fine-tuning approach” to

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 4Patnayakuni SP, et al.,

8

pre-trained language representation. The fine-tuning approach
builds upon the Universal Language Model Fine-tuning
(ULMFiT) method, proposed by38. ULMFiT successfully applied
transfer learning on a pre-trained language model, allowing a
general language model to be fine-tuned with domain-specific
data, for a specific task. In other words, the pre-trained language
model parameters are updated and changed to fit a specific
downstream task.

The most known implementation of said transformer
networks, namely BERT (Bidirectional Encoder Representations
from Transformers) further improved upon the results of
the earlier mentioned architectures. It was subsequently
implemented as a part of the Google search engine, with an
estimated improvement of the search queries by around 10%39.
BERT pre-trains a language model with a technique using
bi-directional transformers, which means that the BERT model
can capture the context of words in all directions, in all layers,
resulting in what37 call deep bidirectional representations. The
BERT model can also be fine-tuned for several downstream
tasks, in the same manner as GPT.

7. Experimental Results
In this work, the experiment conducted with various deep

learning techniques like RNN, LSTM, GRU and BERT for
suggestion mining. The machine learning techniques used
the feature vectors to generate the classification model. We
observed that it was difficult to identify the suitable features that
differentiate the sentences into suggestion or non-suggestion
sentences. The deep learning techniques automatically extract
the features which are suitable for classifying the sentences
into suggestion sentence or not. The word embeddings play
an important role in the process of deep learning classification
process. In this work, word 2vec word embedding technique is
used to generate the word vectors. The hyper parameters used
in the deep learning models show a great difference in the
accuracies of classification.

In this work, the deep learning models used different types of
hyper parameters such as activation function = sigma and tanh
function, epochs count = 10, dropout rate = 30%, neurons count
in hidden layer = 1000, back-propagation technique = ADAM
optimizer, Embedding Vector Size = 300, hidden layers count
= 3, learning rate = 0.001, maximum sequence length = 1000,
transformer layers = 24, self-attention heads = 20, hidden vector
size = 768. The accuracies of suggestion mining are displayed
in Table 2.

Table 2: The accuracies of deep learning techniques for
suggestion mining.

Deep learning Technique Accuracy

RNN 82.71

LSTM 84.37

GRU 84.65

BERT 87.29

The Table 2 shows the accuracies of suggestion mining
when experimented with different deep learning techniques
such as RNN, LSTM, GRU and BERT. The BERT technique
attained good accuracy of 87.29 for suggestion mining. It was
observed that the BERT performance is good when compared
with other deep learning techniques like RNN, LSTM and GRU.
The LSTM and GRU show equal performance for suggestion
mining.

8. Conclusion and Future Scope
In recent times, people are using internet for communication

and sharing their opinions on products, services, places, people etc.
The people opinions and experiences are more helpful to others
to know about different types of entities. Sentiment analysis is
one research are which extracts the positive, negative or neutral
sentiment on the entities from textual reviews. Suggestion mining
is one type of sentiment analysis which extracts the suggestions,
wishes, tips or recommendation sentences in the text which are
helpful for the companies to improve the quality of their entities.
The researchers proposed various solutions to suggestion mining
based on machine learning and deep learning techniques. In this
work, the experiment conducted with different deep learning
techniques like RNN, LSTM, GRU and BERT. The BERT
technique shows good accuracy of 87.29% when compared with
other techniques.

In future work, we are planning to increase the size of
pre-trained vectors as well as increase the size of the training
dataset. We are also planning to implement imbalance techniques
to solve the problems in imbalance in training dataset.

9. References

1. Sapna Negi, Paul Buitelaar. Inducing distant supervision in
suggestion mining through part-of-speech embeddings. arXiv
preprint, 2017.

2. Sapna Negi, Kartik Asooja, Shubham Mehrotra, et al. A study of
suggestions in opinionated texts and their automatic detection.
In: Proceedings of the Fifth Joint Conference on Lexical and
Computational Semantics, ACL Anthology, 2016;170-178.

3. Sapna Negi, Paul Buitelaar. Towards the extraction of customer-
to-customer suggestions from reviews. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language
Processing, ACL Anthology, 2015;2159-2167.

4. Caroline Brun, Caroline Hagege. Suggestion mining: Detecting
suggestions for improvement in users’ comments. Research in
Computing Science, 2013;70: 5379-5362.

5. Amar Viswanathan, Prasanna Venkatesh, Bintu G Vasudevan,
et al. Suggestion mining from customer reviews. In AMCIS,
2011.

6. Mikolov T, Sutskever I, Chen K, et al. Distributed representations
of words and phrases and their compositionality. Advances in
neural information processing systems, 2013;3111-3119.

7. Sapna Negi, Maarten de Rijke, Paul Buitelaar. Open domain
suggestion mining: Problem definition and datasets. arXiv
preprint, 2018.

8. Sapna Negi, Tobias Daudert, Paul Buitelaar. Semeval-2019
task 9: Suggestion mining from online reviews and forums. In:
Proceedings of the 13th international workshop on semantic
evaluation, 2019;877-887.

9. Mateusz Klimaszewski, Piotr Andruszkiewicz. “WUT at
SemEval-2019 Task 9: Domain-adversarial neural networks
for domain adaptation in suggestion mining”. In: Proceedings
of the 13th international workshop on semantic evaluation
(SemEval-2019), Minneapolis, Minnesota, USA, 2019;1262-
1266.

10. Usman Ahmed, Humera Liaquat, Luqman Ahmed, et al.
“Suggestion Miner at SemEval-2019 Task 9: Suggestion
Detection in Online Forum usingWord Graph”. In: Proceedings
of the 13th international workshop on semantic evaluation
(SemEval-2019), Minneapolis, Minnesota, USA, 2019;1242-
1246.

11. Nelleke Oostdijk , Hans van Halteren. “Team Taurus at
SemEval-2019 Task 9: Expert-informed pattern recognition

https://arxiv.org/abs/1709.07403
https://arxiv.org/abs/1709.07403
https://arxiv.org/abs/1709.07403
https://aclanthology.org/S16-2022/
https://aclanthology.org/S16-2022/
https://aclanthology.org/S16-2022/
https://aclanthology.org/S16-2022/
https://aclanthology.org/D15-1258/
https://aclanthology.org/D15-1258/
https://aclanthology.org/D15-1258/
https://aclanthology.org/D15-1258/
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1806.02179
https://arxiv.org/abs/1806.02179
https://arxiv.org/abs/1806.02179
https://aclanthology.org/S19-2151/
https://aclanthology.org/S19-2151/
https://aclanthology.org/S19-2151/
https://aclanthology.org/S19-2151/
https://aclanthology.org/S19-2221/
https://aclanthology.org/S19-2221/
https://aclanthology.org/S19-2221/
https://aclanthology.org/S19-2221/
https://aclanthology.org/S19-2221/
https://aclanthology.org/S19-2221/
https://aclanthology.org/S19-2218/
https://aclanthology.org/S19-2218/
https://aclanthology.org/S19-2218/
https://aclanthology.org/S19-2218/
https://aclanthology.org/S19-2218/
https://aclanthology.org/S19-2218/
https://aclanthology.org/S19-2219/
https://aclanthology.org/S19-2219/

9

Patnayakuni SP, et al., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 4

for suggestion mining”. Proceedings of the 13th international
workshop on semantic evaluation (SemEval-2019), Minneapolis,
Minnesota, USA, 2019;1247-1253.

12. Janardhanan Ramanand, Krishna Bhavsar, and Niranjan
Pedanekar. 2010. Wishful thinking - finding suggestions and
‘buy’wishes from product reviews. In: Proceedings of the NAACL
HLT 2010 workshop on computational approaches to analysis
and generation of emotion in text, Association for Computational
Linguistics, 2010;54-61.

13. Amar Viswanathan, Prasanna Venkatesh, Bintu G Vasudevan,
et al. Suggestion mining from customer reviews. In AMCIS,
2011.

14. Rajalakshmi S, Angel Deborah S, S Milton Rajendram, et al.
“SSN-SPARKS at SemEval-2019 Task 9: Mining Suggestions
from Online Reviews using Deep Learning Techniques on
Augmented Data”. In: Proceedings of the 13th international
workshop on semantic evaluation (SemEval-2019), Minneapolis,
Minnesota, USA, 2019;1237-1241.

15. Tirana Noor Fatyanosa, Al Hafiz Akbar Maulana Siagian,
Masayoshi Aritsugi. “DBMS-KU at SemEval-2019 Task9:
Exploring Machine Learning Approaches in Classifying Text
as Suggestion or Non-Suggestion”. In: Proceedings of the 13th
international workshop on semantic evaluation (SemEval-2019),
Minneapolis, Minnesota, USA, 2019;1185-1191.

16. Aysu Ezen-Can, Ethem F Can. “Hybrid RNN at SemEval-2019
Task 9: Blending information sources for domain-independent
suggestion mining”. IN: Proceedings of the 13th international
workshop on semantic evaluation (SemEval-2019), Minneapolis,
Minnesota, 2019;1199-1203.

17. Jurafsky D, Martin JH. Speech and language processing (3rd
edition draft). Prentice-Hall, 2019.

18. Melamud O, Goldberger J, Dagan I. Context2vec: Learning
generic context embedding with bidirectional LSTM. In:
Proceedings of the 20th SIGNLL conference on computational
natural language learning, 2016;51-61.

19. Hochreiter S, Schmidhuber J. Long short-term memory. Neural
Comput, 1997;9: 1735-1780.

20. Mikolov T, Zweig G. Context dependent recurrent neural network
language model. IEE, 2012; 234-239.

21. John J Hopfield. “Neural networks and physical systems with
emergent collective computational abilities”. Proc Natl Acad Sci
U S A, 1982;79: 2554-2558.

22. David E Rumelhart, Geoffrey E Hinton, Ronald J Williams.
“Learning representations by back-propagating errors”. In:
Cognitive modelling, 1986;523: 533-536.

23. Hochreiter S. The vanishing gradient problem during learning
recurrent neural nets and problem solutions. International
Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 1998;6: 107-116.

24. Felix A Gers, Jürgen Schmidhuber, Fred Cummins, et al.
“Learning to forget: Continual prediction with LSTM”. In: Proc
ICANN’99 Int. Conf. on Artifical Neural Networks,1999;850-855.

25. Klaus Greff. “LSTM: A Search Space Odyssey”. In: IEEE
Transactions on Neural Networks and Learning Systems,
2017;21622388.

26. J Chung, C Gulcehre, K Cho. Empirical evaluation of
gated recurrent neural networks on sequence modeling.
arXiv1412.3555, 2014.

27. Radford A, Wu J, Child R. Language models are unsupervised
multitask learners.

28. Wang A, Singh A, Michael J, et al. GLUE: A multi-task benchmark
and analysis platform for natural language understanding. 2019.

29. Pan SJ, Yang Q. A Survey on transfer learning. IEEE transactions
on knowledge and data engineering, 2010;22: 1345-1359.

30. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need.
Advances in Neural Information Processing Systems, 2017:30:
5998-6008.

31. Bengio Y, Ducharme R, Vincent P, et al. A neural probabilistic
language model. J Mach Learn Res, 2003;3: 1137-1155.

32. Cho K, van Merrienboer B, Gulcehre C, et al. Learning phrase
representations using rnn encoder-decoder for statistical
machine translation. Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP),
2014: 1724-1734.

33. Sutskever I, Vinyals O, Le QV. Sequence to sequence learning
with neural networks. Proceedings of the 27th International
Conference on Neural Information Processing Systems, 2:
3104-3112.

34. Bengio Y, Simard P, Frasconi P. Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural
Networks, 1994;5: 157-166.

35. Peters M, Neumann M, Iyyer M, et al. Deep contextualized word
representations. Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 1: 2227-2237.

36. Radford A, Narasimhan K, Salimans T, et al. Improving language
understanding by generative pre-training. Technical report.
OpenAI, 2018.

37. Devlin J, Chang MW, Lee K, et al. BERT: Pre-training of
deep bidirectional ransformers for language understanding.
Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2019;1: 4171-4186.

38. Howard J, Ruder S. Universal language model fine-tuning for
text classification. Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, 1: 328-339.

39. Rogers A, Kovaleva O, Rumshisky A. A primer in bertology:
What we know about how bert works. arXiv,2002.

https://aclanthology.org/S19-2219/
https://aclanthology.org/S19-2219/
https://aclanthology.org/S19-2219/
https://aclanthology.org/W10-0207/
https://aclanthology.org/W10-0207/
https://aclanthology.org/W10-0207/
https://aclanthology.org/W10-0207/
https://aclanthology.org/W10-0207/
https://aclanthology.org/W10-0207/
https://aclanthology.org/S19-2208/
https://aclanthology.org/S19-2208/
https://aclanthology.org/S19-2208/
https://aclanthology.org/S19-2208/
https://aclanthology.org/S19-2208/
https://aclanthology.org/S19-2208/
https://aclanthology.org/S19-2210/
https://aclanthology.org/S19-2210/
https://aclanthology.org/S19-2210/
https://aclanthology.org/S19-2210/
https://aclanthology.org/S19-2210/
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://aclanthology.org/K16-1006/
https://aclanthology.org/K16-1006/
https://aclanthology.org/K16-1006/
https://aclanthology.org/K16-1006/
https://ieeexplore.ieee.org/document/6424228
https://ieeexplore.ieee.org/document/6424228
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC346238/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC346238/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC346238/
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0
https://www.worldscientific.com/doi/abs/10.1142/S0218488598000094
https://www.worldscientific.com/doi/abs/10.1142/S0218488598000094
https://www.worldscientific.com/doi/abs/10.1142/S0218488598000094
https://www.worldscientific.com/doi/abs/10.1142/S0218488598000094
https://ieeexplore.ieee.org/document/818041
https://ieeexplore.ieee.org/document/818041
https://ieeexplore.ieee.org/document/818041
https://arxiv.org/abs/1503.04069
https://arxiv.org/abs/1503.04069
https://arxiv.org/abs/1503.04069
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://www.cse.ust.hk/~qyang/Docs/2009/tkde_transfer_learning.pdf
https://www.cse.ust.hk/~qyang/Docs/2009/tkde_transfer_learning.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://ieeexplore.ieee.org/document/279181
https://ieeexplore.ieee.org/document/279181
https://ieeexplore.ieee.org/document/279181
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1802.05365
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/2002.12327
https://arxiv.org/abs/2002.12327

	_GoBack
	_GoBack

